Have a personal or library account? Click to login
Spectral Analysis of Compass Errors Based on Fast Fourier Transform and Reduction Absolute Errors Using a Pass-Band Finite Impulse Response Filter Cover

Spectral Analysis of Compass Errors Based on Fast Fourier Transform and Reduction Absolute Errors Using a Pass-Band Finite Impulse Response Filter

Open Access
|Jun 2024

References

  1. K. Pyrchla, A. Tomczak, G. Zaniewicz, J. Pyrchla, and P. Kowalska, “Analysis of the dynamic height distribution at the estuary of the Odra river based on gravimetric measurements acquired with the use of a light survey boat—A case study,” Sensors (Switzerland), vol. 20, no. 21, pp. 1–17, 2020, doi: 10.3390/s20216044.
  2. A. Tomczak, G. Stępień, T. Abramowski, and A. Bejger, “Subsea wellhead spud-in marking and as-built position estimation method based on ultra-short baseline acoustic positioning,” Meas. J. Int. Meas. Confed., vol. 195, no. September 2021, pp. 1–15, 2022, doi: 10.1016/j.measurement.2022.111155.
  3. IMO, Resolution A.424(XI) adopted on 15 November 1979: Performance Standards for Gyro Compasses, vol. 424, November. United Kingdom, 1979. [Online]. Available: https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/AssemblyDocuments/A.424(11).pdf, access: 11.04.2024
  4. M. V. Chichinadze, “Marine gyrocompasses: Development and prospects,” Gyroscopy Navig., vol. 9, no. 4, pp. 358–361, 2018, doi: 10.1134/S207510871804003X.
  5. E. Lushnikov, “The reliability of compass information at navigational safety,” Sci. Journals Marit. Univ. Szczecin, vol. 29, pp. 117–121, 2012. Accessed: Jan. 13, 2023. [Online]. Available: https://repository.am.szczecin.pl/handle/123456789/434
  6. E. Lushnikov and K. Pleskacz, “The precision of compass error observation using parallel lines option in radar,” Sci. Journals Marit. Univ. Szczecin, vol. 29, pp. 126–129, 2012.
  7. A. Felski and M. Mięsikowski, “Some method of determining the characteristic frequencies of ship’s yawing and errors of ship’s compasses during the seatrials,” Annu. Navig, vol. 2, pp. 17–24, 2000.
  8. G. Emel’yantsev et al., “Integrated GNSS/IMU-gyrocompass with rotating IMU. Development and test results,” Remote Sens., vol. 12, no. 22, p. 3736, Nov. 2020, doi: 10.3390/rs12223736.
  9. A. Borys, “On derivation of discrete time Fourier transform from its continuous counterpart,” Int. J. Electron. Telecommun., vol. 66, no. 2, pp. 355–368, 2020, doi: 10.24425/ijet.2020.131885.
  10. A. R. Spielvogel and L. L. Whitcomb, “Preliminary results with a low-cost fiber-optic gyrocompass system,” in OCEANS 2015 - MTS/IEEE, Washington: IEEE, 2015, pp. 1–5.
  11. J. Marszal, “Digital signal processing applied to the modernization of Polish Navy sonars,” Polish Marit. Res., vol. 21, no. 2, pp. 65–75, 2014, doi: 10.2478/pomr-2014-0021.
  12. K. Jaskólski, A. Felski, and P. Piskur, “The compass error comparison of an onboard standard gyrocompass, fiber-optic gyrocompass (FOG) and satellite compass,” Sensors, vol. 19, no. 8, p. 1942, Apr. 2019, doi: 10.3390/s19081942.
  13. A. Felski, K. Jaskólski, K. Zwolak, and P. Piskur, “Analysis of satellite compass error’s spectrum,” Sensors, vol. 20, no. 15, p. 4067, Jul. 2020, doi: 10.3390/s20154067.
  14. A. Makar, “Determination of USV’s direction using satellite and fluxgate compasses and GNSS-RTK,” Sensors, vol. 22, no. 20, pp. 1–17, 2022, doi: 10.3390/s22207895.
  15. K. Jaskólski, “Methodology for verifying the indication correctness of a vessel compass based on the spectral analysis of heading errors and reliability theory,” Sensors, vol. 22, no. 7, p. 2530, Mar. 2022, doi: 10.3390/s22072530.
  16. M. Ueno, R. Santerre, and S. Babineau, “Impact of the antenna configuration on GPS attitude determination,” in Proceedings of the 9th World Congress of the International Association of the Institutes of Navigation, Amsterdam, The Netherlands: International Association of the Institutes of Navigation, 1997.
  17. H. Hu, S. Song, and Y. Gong, “General FIR filter design with linear phase in passband by water cycle algorithm,” J. Comput. Commun., vol. 06, no. 11, pp. 326–331, 2018, doi: 10.4236/jcc.2018.611029.
  18. A. Rak and A. Miller, “Modelling of lake waves to simulate environmental disturbance to a scale ship model,” Polish Marit. Res., vol. 30, no. 3, pp. 12–21, 2023, doi: 10.2478/pomr-2023-0035.
  19. K. Marianoga and B. Palczynska, “The simulation laboratory platform based on Multisim for electronic engineering education,” in 2018 Int. Conf. Signals Electron. Syst. ICSES 2018 - Proc., pp. 269–274, 2018, doi: 10.1109/ICSES.2018.8507313.
  20. H.-C. Lin and Y.-C. Ye, “Reviews of bearing vibration measurement using fast Fourier transform and enhanced fast Fourier transform algorithms,” Adv. Mech. Eng., vol. 11, no. 1, p. 1687814018816751, Jan. 2019, doi: 10.1177/1687814018816751.
  21. W. Biao, T. Jiansheng, Y. Fujian, and Z. Zhiyu, “Identification of sonar detection signal based on fractional Fourier transform,” Polish Marit. Res., vol. 25, pp. 125–131, 2018, doi: 10.2478/pomr-2018-0083.
  22. G. Yan, Y. Hu, and J. Jiang, “A novel fault diagnosis method for marine blower with vibration signals,” Polish Marit. Res., vol. 29, no. 2, pp. 77–86, 2022, doi: 10.2478/pomr-2022-0019.
  23. Y. J. Yoo, “Fault detection of induction motor using fast Fourier transform with feature selection via principal component analysis,” Int. J. Precis. Eng. Manuf., vol. 20, no. 9, pp. 1543–1552, 2019, doi: 10.1007/s12541-019-00176-z.
  24. E. Rajaby and S. M. Sayedi, “A structured review of sparse fast Fourier transform algorithms,” Digit. Signal Process. A Rev. J., vol. 123, p. 103403, 2022, doi: 10.1016/j.dsp.2022.103403.
  25. Q. Xu et al., “Study on the dynamic response of deep-sea trawlers in sea trials,” Polish Marit. Res., vol. 30, no. 1, pp. 25–32, 2023, doi: 10.2478/pomr-2023-0003.
  26. K. Czarnecki, “Bearing estimation using double frequency,” Polish Marit. Res., vol. 24, no. 95, pp. 26–35, 2017. [Online]. Available: 10.1515/pomr-2017-0087.
  27. S. Dhabal and S. Sengupta, “Efficient design of high pass FIR filter using quantum-behaved particle swarm optimization with weighted mean best position,” in Proc. 2015 3rd Int. Conf. Comput. Commun. Control Inf. Technol. C3IT 2015, January, 2015, doi: 10.1109/C3IT.2015.7060145.
  28. PRS, Przepisy nadzoru konwencyjnego statków morskich. Część V. Urządzenia Nawigacyjne, vol. V. Gdańsk: PRS, 2019.
  29. M. Yang, E. Isufi, M. T. Schaub, and G. Leus, “Finite impulse response filters for simplicial complexes,” in 2021 29th European Signal Processing Conference (EUSIPCO), 2021, pp. 2005–2009. doi: 10.23919/EUSIPCO54536.2021.9616185.
  30. J. Konopacki, “Design of sparse FIR filters with low group delay,” Int. J. Electron. Telecommun., vol. 67, no. 1, pp. 121–126, 2021, doi: 10.24425/ijet.2021.135953.
  31. P. Zahradnik, “Robust analytical design of optimal equiripple lowpass FIR filters,” IEEE Signal Process. Lett., vol. 27, pp. 755–759, 2020, doi: 10.1109/LSP.2020.2989679.
  32. Matlab, Signal processing toolbox, User’s guide R2021a. Natick, USA: MathWorks, 2021.
  33. A. Felski and K. Jaskólski, “The properties of a ship’s compass in the context of ship manoeuvrability,” Sensors, vol. 23, no. 3, pp. 1–15, 2023, doi: 10.3390/s23031254.
  34. P. Zalewski, A. Bąk, and M. Bergmann, “Evolution of maritime GNSS and RNSS performance standards,” Remote Sens., vol. 14, no. 21, pp. 1–27, 2022, doi: 10.3390/rs14215291
DOI: https://doi.org/10.2478/pomr-2024-0027 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 109 - 120
Published on: Jun 22, 2024
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Krzysztof Jaskólski, Wojciech Czaplinski, Arkadiusz Tomczak, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.