Have a personal or library account? Click to login

Practical Finite-Time Event-Triggered Control of Underactuated Surface Vessels in Presence of False Data Injection Attacks

By:
Open Access
|Mar 2024

References

  1. S. L. Yu, J. S. Lu, G. B. Zhu and S. J. Yang, ‘Event-triggered finite-time tracking control of underactuated MSVs based on neural network disturbance observer’, Ocean Engineering, 2022, doi: 10.1016/j.oceaneng.2022.111169.
  2. X. F. Meng, G. C. Zhang and Q. Zhang, ‘Event-triggered trajectory tracking control of underactuated surface vessels with performance-improving mechanisms under input saturation and actuator faults’, Transactions of the Institute of Measurement and Control, 2023, doi: 10.1177/01423312231187008.
  3. Z. H. Yu and W. L. Chin, ‘Blind false data injection attack using PCA approximation method in smart grid,’ IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1219–1226, 2015, doi: 10.1109/TSG.2014.2382714.
  4. Q. T. Yin, Y. X. Bian, J. Du, W. Zhao and S. B. Yang, ‘Dual backstepping variable structure switching control of bounded uncertain nonlinear system’, International Journal of Systems Science, vol. 53, no. 11, pp. 2341–2357, 2022, doi: 10.1080/00207721.2022.2051094.
  5. R. Rout, R. X. Cui and W. S. Yan, ‘Sideslip-compensated guidance-based adaptive neural control of marine surface vessels’, IEEE Transactions on Cybernetics, vol. 52, no. 5, pp. 2860–2871, 2022, doi: 10.1109/TCYB.2020.3023162.
  6. D. Menges and A. Rasheed, ‘An environmental disturbance observer framework for autonomous surface vessels’, Ocean Engineering, vol. 285, 2023, doi: 10.1016/j.oceaneng.2023.115412.
  7. C. Zhang and S. H. Yu, ‘Disturbance observer-based prescribed performance super-twisting sliding mode control for autonomous surface vessels’, ISA Transactions, vol. 135, pp. 13–22, 2023, doi: 10.1016/j.isatra.2022.09.025.
  8. X. W. Wang, J. Liu, H. J. Peng, X. W. Qie, X. D. Zhao and C. Lu ‘A simultaneous planning and control method integrating APF and MPC to solve autonomous navigation for USVs in unknown environments’, Journal of Intelligent & Robotic Systems, vol. 105, no. 2, 2022, doi: 10.1007/s10846-022-01663-8.
  9. X. Han and X. K. Zhang, ‘Tracking control of ship at sea based on MPC with virtual ship bunch under Frenet frame’, Ocean Engineering, 2022, doi: 10.1016/j.oceaneng.2022.110737.
  10. W. R. Wang, J. H. Yan, H. Wang, H. L. Ge, Z. Y. Zhu and G. J. Yang, ‘Adaptive MPC trajectory tracking for AUV based on Laguerre function’, Ocean Engineering, 2022, doi: 10.1016/j.oceaneng.2022.111870.
  11. E. Tatlicioglu, B. M. Yilmaz, A. Savran and M. Alci, ‘Adaptive fuzzy logic with self-adjusting membership functions based tracking control of surface vessels’, Ocean Engineering, 2022, doi: 10.1016/j.oceaneng.2022.111129.
  12. X. F. Meng, G. C. Zhang and Q Zhang, ‘Robust adaptive neural network integrated fault-tolerant control for underactuated surface vessels with finite-time convergence and event-triggered inputs’, Mathematical Biosciences and Engineering, vol. 20, no. 2, pp. 2131–2156, 2023, doi: 10.3934/mbe.2023099.
  13. Y. Fang, E, Zergeroglu, M. S. de. Queiroz and D. M. Dawson, ‘Global output feedback control of dynamically positioned surface vessels: an adaptive control approach. Mechatronics’, Mechatronics, vol. 14, no. 4, pp. 341–356, 2004, doi: 10.1016/S0957-4158(03)00064-3.
  14. G. B. Zhu, Y. Ma, Z. X. Li, R. Malekian and Sotelo M, ‘Adaptive neural output feedback control for MSVs with predefined performance’, IEEE Transactions on Vehicular Technology, vol. 70, no. 4 pp. 2994–3006, 2021, doi: 10.1109/TVT.2021.3063687.
  15. G. B. Zhu, Y. Ma and S. L. Hu, ‘Single-parameter-learning-based finite-time tracking control of underactuated MSVs under input saturation’, Control Engineering Practice, 2020, doi: 10.1016/j.conengprac.2020.104652.
  16. Y. L. Yu, C. Guo and T. S. Li, ‘Finite-time LOS path following of unmanned surface vessels with time-varying sideslip angles and input saturation’, IEEE-ASME Transactions on Mechatronics, vol. 27, no. 1, pp. 463–474, 2022, doi: 10.1109/TMECH.2021.3066211.
  17. M, Van, V. T. Do, M. O. Khyam and Do XP, ‘Tracking control of uncertain surface vessels with global finite-time convergence’, Ocean Engineering, 2021, doi: 10.1016/j.oceaneng.2021.109974.
  18. X. F. Meng, G. C. Zhang and B. Han, ‘Fault-tolerant control of underactuated MSVs based on neural finite-time disturbance observer: An Event-triggered Mechanism’, Journal of the Franklin Institute, 2024, doi: 10.1016/j.jfranklin.2024.01.004.
  19. Y. J. Deng, X. K. Zhang, N. Im, G. Q. Zhang and Q. Zhang, ‘Model-based event-triggered tracking control of underactuated surface vessels with minimum learning parameters’, IEEE Transactions on Neural Networks and Learning Systems’, vol. 31, no. 10, pp. 4001–4014, 2020, doi: 10.1109/TNNLS.2019.2951709.
  20. G. B. Zhu, Y. Ma and S. L. Hu, ‘Event-triggered adaptive PID fault-tolerant control of underactuated ASVs under saturation constraint’, IEEE Transactions on Systems Man Cybernetics-Systems, vol. 53, no. 8, pp. 4922–4933, 2023, doi: 10.1109/TSMC.2023.3256538.
  21. N. Feng, D. F. Wu, H. L. Yu, A. S. Yamashita and Y. Q. Huang, ‘Predictive compensator based event-triggered model predictive control with nonlinear disturbance observer for unmanned surface vehicle under cyber-attacks’, Ocean Engineering, vol. 259, 2022, doi: 10.1016/j.oceaneng.2022.111868.
  22. Y. X. Zheng, L. Zhang, B. Huang and Y. M. Su, ‘Distributed secure formation control for autonomous surface vessels by performance adjustable event-triggered mechanism’, International Journal of Robust and Nonlinear Control, vol. 33, no. 14, pp. 8490–8507, 2023, doi: 10.1002/rnc.6832.
  23. G. Q. Zhang, X. J. Dong, Q. H. Shan and W. D. Zhang, ‘Event-triggered robust adaptive control for unmanned surface vehicle in presence of deception attacks’, Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering, vol. 237, no. 7, pp. 1266–1280, 2023, doi: 10.1177/09596518231153437.
  24. T. I. Fossen, Handbook of marine craft hydrodynamics and motion control, 2011.
  25. Y. Ma, G. B. Zhu and Z. X. Li, ‘Error-driven-based nonlinear feedback recursive design for adaptive NN trajectory tracking control of surface ships with input saturation’, IEEE Intelligent Transportation Systems Magazine, 2019, vol. 11, no. 2, pp. 17–28, doi: 10.1109/MITS.2019.2903517.
  26. K. X. Huang, C. J. Zhou, Y. Q. Qin and W. X. Tu, ‘A game-theoretic approach to cross-layer security decision-making in industrial cyber-physical systems’, IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 2371–2379, 2020, doi: 10.1109/TIE.2019.2907451.
  27. S. H. Yu, X. H. Yu, B. Shirinzadeh and Z. H. Man, ‘Continuous finite time control for robotic manipulators with terminal sliding mode’, Automatica, vol. 41, no. 11, pp. 1957–1964, 2005, doi: 10.1016/j.automatica.2005.07.001.
  28. M. M. Polycarpou, ‘Stable adaptive neural control scheme for nonlinear systems’, IEEE Transactions on Automatic Control, vol. 41, no. 3, pp. 447–451, 1996, doi: 10.1109/9.486648.
  29. X. F. Meng, G. C. Zhang, Q. Zhang and B. Han, ‘Event-triggered adaptive command-filtered trajectory tracking control for underactuated surface vessels based on multivariate finite-time disturbance observer under actuator faults and input saturation’, Transactions of the Institute of Measurement and Control, 2024, doi: 10.1177/01423312231195657.
  30. R. Skjetne, T. I. Fossen and P. V. Kokotovic, ‘Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory’, Automatica, vol. 41, no. 2, pp. 289–298, 2005, doi: 10.1016/j.automatica.2004.10.006.
DOI: https://doi.org/10.2478/pomr-2024-0012 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 114 - 126
Published on: Mar 29, 2024
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Liping Chen, Minghua Sun, Li Wang, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.