Have a personal or library account? Click to login

Fault Diagnosis of Imbalance and Misalignment in Rotor-Bearing Systems Using Deep Learning

Open Access
|Mar 2024

Abstract

Rotor-bearing systems are important components of rotating machinery and transmission systems, and imbalance and misalignment are inevitable in such systems. At present, the main challenges faced by state-of-the-art fault diagnosis methods involve the extraction of fault features under strong background noise and the classification of different fault modes. In this paper, a fault diagnosis method based on an improved deep residual shrinkage network (IDRSN) is proposed with the aim of achieving end-to-end fault diagnosis of a rotor-bearing system. First, a method called wavelet threshold denoising and variational mode decomposition (WTD-VMD) is proposed, which can process original noisy signals into intrinsic mode functions (IMFs) with a salient feature. These one-dimensional IMFs are then transformed into two-dimensional images using a Gramian angular field (GAF) to give datasets for the deep residual shrinkage network (DRSN), which can achieve high levels of accuracy under strong background noise. Finally, a comprehensive test platform for a rotor-bearing system is built to verify the effectiveness of the proposed method in the field. The true test accuracy of the model at a 95% confidence interval is found to range from 84.09% to 86.51%. The proposed model exhibits good robustness when dealing with noisy samples and gives the best classification results for fault diagnosis under misalignment, with a test accuracy of 100%. It also achieves a higher testing accuracy compared to fault diagnosis methods based on convolutional neural networks and deep residual networks without improvement. In summary, IDRSN has significant value for deep learning engineering applications involving the fault diagnosis of rotor-bearing systems.

DOI: https://doi.org/10.2478/pomr-2024-0011 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 102 - 113
Published on: Mar 29, 2024
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Fayou Liu, Weijia Li, Yaozhong Wu, Yuhang He, Tianyun Li, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.