References
- G. Zeng, R. Wang, W. Yu, A. Lin, H. Li, and Y. Shang, “A transfer learning-based approach to maritime warships re-identification,” Engineering Applications of Artificial Intelligence, vol. 125, p. 106 696, 2023, ISSN: 0952-1976. DOI: https://doi.org/10.1016/j.engappai.2023.106696. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0952197623008801.
- M. Böhle, M. Fritz, and B. Schiele, “Convolutional dynamic alignment networks for inter- pretable classifications,” pp. 10 024–10 033, 2021. DOI: 10.1109/CVPR46437.2021.00990.
- D. Prasad, D. Rajan, L. Rachmawati, E. Rajabaly, and C. Quek, “Video processing from electro-optical sensors for object detection and tracking in a maritime environment: A survey,” IEEE Transactions on Intelligent Transportation Systems, vol. PP, Nov. 2016. DOI: 10.1109/TITS.2016.2634580.
- J. Cheng, R. Wang, A. Lin, D. Jiang, and Y. Wang, “A feature enhanced RetinaNet − based for instance-level ship recognition,” Engineering Applications of Artificial Intelligence, vol. 126, p. 107 133, Nov. 2023. DOI: 10.1016/j.engappai.2023.107133.
- Q. Yu, A. Teixeira, K. Liu, and C. Guedes Soares, “Framework and application of multicriteria ship collision risk assessment,” Ocean Engineering, vol. 250, p. 111 006, 2022, ISSN: 0029-8018. DOI: https://doi.org/10.1016/j.oceaneng.2022.111006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0029801822004309.
- F. Farahnakian, L. Zelioli, and J. Heikkonen, “Transfer learning for maritime vessel detection using deep neural networks,” pp. 1–6, 2021. DOI: 10.1109/ITSC48978.2021.9565077.
- D. K. Prasad, C. K. Prasath, D. Rajan, L. Rachmawati, E. Rajabaly, and C. Quek, “Challenges in video based object detection in maritime scenario using computer vision,” arXiv preprint arXiv:1608.01079, 2016.
- R. Zhang, S. Li, G. Ji, X. Zhao, J. Li, and M. Pan, “Survey on deep learning-based marine object detection,” Journal of Advanced Transportation, vol. 2021, pp. 1–18, Nov. 2021. DOI: 10.1155/2021/5808206.
- D. Qiao, G. Liu, T. Lv, W. Li, and J. Zhang, “Marine vision-based situational awareness using discriminative deep learning: A survey,” Journal of Marine Science and Engineering, vol. 9, no. 4, p. 397, 2021.
- J. Rodrigues, P. Cardoso, J. Monteiro, et al., Computational Science – ICCS 2019 19th International Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part III: 19th International Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part III. Jan. 2019, ISBN: 978-3-030-22743-2. DOI: 10.1007/978-3-030-22744-9.
- D. Qiao, G. Liu, F. Dong, S.-X. Jiang, and L. Dai, “Marine vessel re-identification: A large-scale dataset and global-and-local fusion-based discriminative feature learning,” IEEE Access, vol. 8, pp. 27 744–27 756, 2020.
- D. Qiao, G. Liu, J. Zhang, Q. Zhang, G. Wu, and F. Dong, “M 3c: Multimodel-and-multicue-based tracking by detection of surrounding vessels in maritime environment for USV,” Electronics, vol. 8, no. 7, p. 723, 2019.
- M. Er, Y. Zhang, J. Chen, and W. Gao, “Ship detection with deep learning: A survey,” Artificial Intelligence Review, vol. 56, pp. 1–41, Mar. 2023. DOI: 10.1007/s10462-023-10455-x.
- P. Spagnolo, F. Filieri, C. Distante, P. L. Mazzeo, and P. D’Ambrosio, “A new annotated dataset for boat detection and re-identification,” pp. 1–7, Sep. 2019. DOI: 10.1109/AVSS.2019.8909831.
- H. Luo, W. Jiang, X. Zhang, X. Fan, J. Qian, and C. Zhang, “AlignedReID + +: Dynamically matching local information for person re-identification,” Pattern Recognition, vol. 94, pp. 53–61, 2019, ISSN: 0031-3203. DOI: https://doi.org/10.1016/j.patcog.2019.05.028. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320319302031.
- H. Wang, H. Du, Y. Zhao, and J. Yan, “A comprehensive overview of person re-identification approaches,” IEEE Access, vol. PP, pp. 1–1, Mar. 2020. DOI: 10.1109/ACCESS.2020.2978344.
- B. Sun, Y. Ren, and X. Lu, “Semisupervised consistent projection metric learning for person reidentification,” IEEE Transactions on Cybernetics, vol. PP, pp. 1–10, Apr. 2020. DOI: 10.1109/TCYB.2020.2979262.
- N. Martinel, M. Dunnhofer, R. Pucci, G. Foresti, and C. Micheloni, “Lord of the rings: Hanoi pooling and self-knowledge distillation for fast and accurate vehicle re-identification,” IEEE Transactions on Industrial Informatics, vol. PP, pp. 1–1, Mar. 2021. DOI: 10.1109/TII.2021.3068927.
- X. Liu, S. Zhang, X. Wang, R. Hong, and Q. Tian, “Group-group loss-based global-regional feature learning for vehicle re-identification,” IEEE Transactions on Image Processing, vol. 29, pp. 2638–2652, 2019.
- B. Brabandere, X. Jia, T. Tuytelaars, and L. Van Gool, “Dynamic filter networks,” Neural Information Processing Systems (NIPS), Jan. 2016.
- S. He, H. Luo, P. Wang, F. Wang, H. Li, and W. Jiang, “TransReID: Transformer-based object re-identification,” 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14 993–15 002, 2021. https://api.semanticscholar.org/CorpusID:231846818.
- T. Wang, H. Liu, W. Li, M. Ban, T. Guo, and Y. Li, Feature completion transformer for occluded person re-identification, Mar. 2023. DOI: 10.48550/arXiv.2303.01656.
- Y. Wu, W. Yang, and M. Wang, “Unsupervised person re-identification with attention-guided fine-grained features and symmetric contrast learning,” Sensors, vol. 22, no. 18, 2022, ISSN: 1424-8220. [Online]. Available: https://www.mdpi.com/1424-8220/22/18/6978.
- X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool, “Dynamic filter networks,” in
- Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,
- Guyon, and R. Garnett, Eds., vol. 29, Curran Associates, Inc., 2016. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2016/file/8bf1211fd4b7b94528899de0a43b9fb3-Paper.pdf.
- D. K. Jana, S. Roy, P. Dey, and B. Bej, “Utilization of a linguistic response surface methodology to the business strategy of polypropylene in an Indian petrochemical plant,” Cleaner Chemical Engineering, vol. 2, p. 100 010, 2022, ISSN: 2772-7823. DOI: https://doi.org/10.1016/j.clce.2022.100010.
- S. Roy, D.-P. Vuong, and D. K. Jana, “Priority-aware scheduling method based on linguistic interval type 2 fuzzy logic systems for dense industrial iot networks employing soft computing,” Results in Control and Optimization, vol. 14, p. 100 391, 2024, ISSN: 2666-7207. DOI:https://doi.org/10.1016/j.rico.2024.100391.