Have a personal or library account? Click to login
Re-Identifying Naval Vessels Using Novel Convolutional Dynamic Alignment Networks Algorithm Cover

Re-Identifying Naval Vessels Using Novel Convolutional Dynamic Alignment Networks Algorithm

Open Access
|Mar 2024

References

  1. G. Zeng, R. Wang, W. Yu, A. Lin, H. Li, and Y. Shang, “A transfer learning-based approach to maritime warships re-identification,” Engineering Applications of Artificial Intelligence, vol. 125, p. 106 696, 2023, ISSN: 0952-1976. DOI: https://doi.org/10.1016/j.engappai.2023.106696. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0952197623008801.
  2. M. Böhle, M. Fritz, and B. Schiele, “Convolutional dynamic alignment networks for inter- pretable classifications,” pp. 10 024–10 033, 2021. DOI: 10.1109/CVPR46437.2021.00990.
  3. D. Prasad, D. Rajan, L. Rachmawati, E. Rajabaly, and C. Quek, “Video processing from electro-optical sensors for object detection and tracking in a maritime environment: A survey,” IEEE Transactions on Intelligent Transportation Systems, vol. PP, Nov. 2016. DOI: 10.1109/TITS.2016.2634580.
  4. J. Cheng, R. Wang, A. Lin, D. Jiang, and Y. Wang, “A feature enhanced RetinaNet − based for instance-level ship recognition,” Engineering Applications of Artificial Intelligence, vol. 126, p. 107 133, Nov. 2023. DOI: 10.1016/j.engappai.2023.107133.
  5. Q. Yu, A. Teixeira, K. Liu, and C. Guedes Soares, “Framework and application of multicriteria ship collision risk assessment,” Ocean Engineering, vol. 250, p. 111 006, 2022, ISSN: 0029-8018. DOI: https://doi.org/10.1016/j.oceaneng.2022.111006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0029801822004309.
  6. F. Farahnakian, L. Zelioli, and J. Heikkonen, “Transfer learning for maritime vessel detection using deep neural networks,” pp. 1–6, 2021. DOI: 10.1109/ITSC48978.2021.9565077.
  7. D. K. Prasad, C. K. Prasath, D. Rajan, L. Rachmawati, E. Rajabaly, and C. Quek, “Challenges in video based object detection in maritime scenario using computer vision,” arXiv preprint arXiv:1608.01079, 2016.
  8. R. Zhang, S. Li, G. Ji, X. Zhao, J. Li, and M. Pan, “Survey on deep learning-based marine object detection,” Journal of Advanced Transportation, vol. 2021, pp. 1–18, Nov. 2021. DOI: 10.1155/2021/5808206.
  9. D. Qiao, G. Liu, T. Lv, W. Li, and J. Zhang, “Marine vision-based situational awareness using discriminative deep learning: A survey,” Journal of Marine Science and Engineering, vol. 9, no. 4, p. 397, 2021.
  10. J. Rodrigues, P. Cardoso, J. Monteiro, et al., Computational Science – ICCS 2019 19th International Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part III: 19th International Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part III. Jan. 2019, ISBN: 978-3-030-22743-2. DOI: 10.1007/978-3-030-22744-9.
  11. D. Qiao, G. Liu, F. Dong, S.-X. Jiang, and L. Dai, “Marine vessel re-identification: A large-scale dataset and global-and-local fusion-based discriminative feature learning,” IEEE Access, vol. 8, pp. 27 744–27 756, 2020.
  12. D. Qiao, G. Liu, J. Zhang, Q. Zhang, G. Wu, and F. Dong, “M 3c: Multimodel-and-multicue-based tracking by detection of surrounding vessels in maritime environment for USV,” Electronics, vol. 8, no. 7, p. 723, 2019.
  13. M. Er, Y. Zhang, J. Chen, and W. Gao, “Ship detection with deep learning: A survey,” Artificial Intelligence Review, vol. 56, pp. 1–41, Mar. 2023. DOI: 10.1007/s10462-023-10455-x.
  14. P. Spagnolo, F. Filieri, C. Distante, P. L. Mazzeo, and P. D’Ambrosio, “A new annotated dataset for boat detection and re-identification,” pp. 1–7, Sep. 2019. DOI: 10.1109/AVSS.2019.8909831.
  15. H. Luo, W. Jiang, X. Zhang, X. Fan, J. Qian, and C. Zhang, “AlignedReID + +: Dynamically matching local information for person re-identification,” Pattern Recognition, vol. 94, pp. 53–61, 2019, ISSN: 0031-3203. DOI: https://doi.org/10.1016/j.patcog.2019.05.028. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320319302031.
  16. H. Wang, H. Du, Y. Zhao, and J. Yan, “A comprehensive overview of person re-identification approaches,” IEEE Access, vol. PP, pp. 1–1, Mar. 2020. DOI: 10.1109/ACCESS.2020.2978344.
  17. B. Sun, Y. Ren, and X. Lu, “Semisupervised consistent projection metric learning for person reidentification,” IEEE Transactions on Cybernetics, vol. PP, pp. 1–10, Apr. 2020. DOI: 10.1109/TCYB.2020.2979262.
  18. N. Martinel, M. Dunnhofer, R. Pucci, G. Foresti, and C. Micheloni, “Lord of the rings: Hanoi pooling and self-knowledge distillation for fast and accurate vehicle re-identification,” IEEE Transactions on Industrial Informatics, vol. PP, pp. 1–1, Mar. 2021. DOI: 10.1109/TII.2021.3068927.
  19. X. Liu, S. Zhang, X. Wang, R. Hong, and Q. Tian, “Group-group loss-based global-regional feature learning for vehicle re-identification,” IEEE Transactions on Image Processing, vol. 29, pp. 2638–2652, 2019.
  20. B. Brabandere, X. Jia, T. Tuytelaars, and L. Van Gool, “Dynamic filter networks,” Neural Information Processing Systems (NIPS), Jan. 2016.
  21. S. He, H. Luo, P. Wang, F. Wang, H. Li, and W. Jiang, “TransReID: Transformer-based object re-identification,” 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14 993–15 002, 2021. https://api.semanticscholar.org/CorpusID:231846818.
  22. T. Wang, H. Liu, W. Li, M. Ban, T. Guo, and Y. Li, Feature completion transformer for occluded person re-identification, Mar. 2023. DOI: 10.48550/arXiv.2303.01656.
  23. Y. Wu, W. Yang, and M. Wang, “Unsupervised person re-identification with attention-guided fine-grained features and symmetric contrast learning,” Sensors, vol. 22, no. 18, 2022, ISSN: 1424-8220. [Online]. Available: https://www.mdpi.com/1424-8220/22/18/6978.
  24. X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool, “Dynamic filter networks,” in
  25. Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,
  26. Guyon, and R. Garnett, Eds., vol. 29, Curran Associates, Inc., 2016. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2016/file/8bf1211fd4b7b94528899de0a43b9fb3-Paper.pdf.
  27. D. K. Jana, S. Roy, P. Dey, and B. Bej, “Utilization of a linguistic response surface methodology to the business strategy of polypropylene in an Indian petrochemical plant,” Cleaner Chemical Engineering, vol. 2, p. 100 010, 2022, ISSN: 2772-7823. DOI: https://doi.org/10.1016/j.clce.2022.100010.
  28. S. Roy, D.-P. Vuong, and D. K. Jana, “Priority-aware scheduling method based on linguistic interval type 2 fuzzy logic systems for dense industrial iot networks employing soft computing,” Results in Control and Optimization, vol. 14, p. 100 391, 2024, ISSN: 2666-7207. DOI:https://doi.org/10.1016/j.rico.2024.100391.
DOI: https://doi.org/10.2478/pomr-2024-0007 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 64 - 76
Published on: Mar 29, 2024
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Sudipta Roy, Dipak Kumar Jana, Nguyen Long, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.