Have a personal or library account? Click to login
Exploration of a Model Thermoacoustic Turbogenerator with a Bidirectional Turbine Cover

Exploration of a Model Thermoacoustic Turbogenerator with a Bidirectional Turbine

Open Access
|Dec 2023

References

  1. N. Olmer, B. Comer, B. Roy, X. Mao, and D. Rutherford, “Greenhouse gas emissions from global shipping.” [Online]. Available: https://theicct.org/wp-content/uploads/2021/06/Global-shipping-GHG-emissions-2013-2015_ICCT-Report_17102017_vF.pdf. [Accessed: Oct. 15, 2023].
  2. International Maritime Organization, “Initial IMO GHG strategy.” [Online]. Available: https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gasemissions-from-ships.aspx. [Accessed: Oct. 15, 2023].
  3. International Maritime Organization, “Note by the International Maritime Organization to the UNFCCC Talanoa Dialogue.” [Online]. Available: https://unfccc.int/sites/default/files/resource/250_IMO%20submission_Talanoa%20Dialogue_April%202018.pdf. [Accessed: Oct. 15, 2023].
  4. International Maritime Organization, “IMO. Low carbon shipping and air pollution control.” [Online]. Available: http://www.imo.org/en/MediaCentre/HotTopics/GHG/Pages/default.aspx. [Accessed: Oct. 15, 2023].
  5. International Maritime Organization, “Fourth IMO GHG study 2020 executive-summary.” [Online]. Available: https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/Fourth%20IMO%20GHG%20Study%202020%20Executive-Summary.pdf. [Accessed: Oct. 15, 2023].
  6. Finnish Marine Industries, “Journey to a carbon-free world: Introducing the NYK SUPER ECO SHIP 2050.” [Online]. Available: https://meriteollisuus.teknologiateollisuus.fi/en/ajankohtaista/news/journey-carbon-free-world-introducing-nyk-super-eco-ship-2050. [Accessed: Oct. 15, 2023].
  7. H. Shi, Q. Zhang, M. Liu, K. Yang, and J. Yuan, “Numerical Study of the Ejection Cooling Mechanism of Ventilation for a Marine Gas Turbine Enclosure,” Polish Maritime Research, Vol. 29, No. 3, pp. 119–127, 2022, doi: org/10.2478/ pomr-2022-0032.
  8. T. Niksa-Rynkiewicz, A. Witkowska, J. Głuch, and M. Adamowicz, “Monitoring the Gas Turbine Start-Up Phase on a Platform Using a Hierarchical Model Based on Multi-Layer Perceptron Networks,” Polish Maritime Research, Vol. 29, No. 4, pp. 123–131, 2022, doi: 10.2478/ pomr-2022-0050.
  9. E.-L. Tsougranis and D. Wu, “A feasibility study of organic Rankine cycle (ORC) power generation using thermal and cryogenic waste energy on board an LNG passenger vessel,” International Journal of Energy Research, Vol. 42, No. 9, pp. 3121–3142, July 2018, doi: 10.1002/er.4047.
  10. M. E. Mondejar, J. G. Andreasen, L. Pierobon, U. Larsen, M. Thern, and F. Haglind, “A review of the use of organic Rankine cycle power systems for maritime applications,” Renewable and Sustainable Energy Reviews, Vol. 91, pp. 126– 151, 2018, doi: 10.1016/j.rser.2018.03.074.
  11. T. Hoang, “Waste heat recovery from diesel engines based on Organic Rankine Cycle,” Applied Energy, Vol. 231. 2018, doi: 10.1016/j.apenergy.2018.09.022.
  12. O. Cherednichenko, S. Serbin, and M. Dzida, “Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units,” Polish Maritime Research, Vol. 26, No. 3, pp. 181–187, Sep. 2019, doi: 10.2478/pomr-2019-0059.
  13. G. W. Swift, “Thermoacoustic engines,” J. Acoust. Soc. Am., Vol. 84, No. 4, pp. 1145–1180, 1988.
  14. G. W. Swift, “Thermoacoustics: A unifying perspective for some engines and refrigerators,” Acoust. Soc. Am., 2002. ISBN 0-7354-0065-2.
  15. L. M. Qi, P. Lou, K. Wang, et al., “Characteristics of onset and damping in a standing-wave thermoacoustic engine driven by liquid nitrogen,” Chin. Sci. Bull., Vol. 58, pp. 1325-1330, 2013, doi: 10.1007/s11434-012-5214-z.
  16. Z. Yang, V. Korobko, M. Radchenko, and R. Radchenko, “Improving thermoacoustic low-temperature heat recovery systems,” Sustainability (Switzerland), Vol. 14, No. 19, art. No. 12306, 2022, doi: 10.3390/su141912306.
  17. T. K. Das, P. Halder, and A. Samad, “Optimal design of air turbines for oscillating water column wave energy systems: A review,” Int. J. Ocean Clim. Syst., Vol. 8, No. 1, pp. 37–49, 2017, doi: 10.1177/1759313117693639.
  18. A. F. O. Falcao and J. C. C. Henriques, “Oscillating-water-column wave energy converters and air turbines: A review,” Renewable Energy, 2015, doi: 10.1016/j.renene.2015.07.086.
  19. A. Thakker and F. Hourigan, “Modeling and scaling of the impulse turbine for wave power applications,” Renewable Energy, Vol. 29, No. 3, pp. 305–317, 2004, doi: 10.1016/ S0960-1481(03)00253-2.
  20. D. Liu, Y. Chen, W. Dai, et al., “Acoustic characteristics of bi-directional turbines for thermoacoustic generators,” Front. Energy, Vol. 16, pp. 1027–1036, 2022, doi: 10.1007/ s11708-020-0702-3.
  21. M. A. Elhawary, A. H. Ibrahim, A. S. Sabry, and E. Abdel-Rahman, “Experimental study of a small scale bi-directional axial impulse turbine for acoustic-to-mechanical power conversion,” Renewable Energy, 2020, doi: 10.1016/j. renene.2020.05.162.
  22. C. Iniesta, J. L. Olazagoitia, J. Vinolas, and J. Aranceta, “Review of travelling-wave thermoacoustic electric-generator technology,” in Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2018, doi: 10.1177/0957650918760627.
  23. Y. Kondratenko, S. Serbin, V. Korobko, and O. Korobko, “Optimisation of bi-directional pulse turbine for waste heat utilization plant based on green IT paradigm,” Studies in Systems, Decision and Control, Vol. 171, pp. 469–485, 2019, doi: 10.1007/978-3-030-00253-4_20.
  24. T. Kloprogge, “Turbine design for thermo-acoustic generator,” Master’s thesis, Aeronautical Engineering, Hogeschool. Holland Delft, 2012. Available: https://bioenergyforumfact.org/sites/default/files/2018-06/5.%20Turbine%20Design%20for%20a%20Thermo-acoustic%20Generator.pdf. [Accessed: Oct. 15, 2023].
  25. Y. Kondratenko, O. Korobko, and V. Korobko, “Microprocessor system for thermoacoustic plants efficiency analysis based on a two-sensor method,” Sensors & Transducers, Vol. 24, Aug. 2013. Available: https://www.academia.edu/95466184/Microprocessor_System_for_Thermoacoustic_Plants_Efficiency_Analysis_Based_on_a_Two_Sensor_Method. [Accessed: Oct. 15, 2023].
  26. ANSYS, Inc., ANSYS Fluent Theory Guide. ANSYS, Inc., 2013.
  27. S. I. Serbin, I. B. Matveev, and G. B. Mostipanenko, “Plasma-assisted reforming of natural gas for GTL: Part II - Modeling of the methane-oxygen reformer,” IEEE Trans. Plasma Sci., Vol. 43, No. 12, pp. 3964–3968, 2015, doi: 10.1109/ TPS.2015.2438174.
  28. I. Matveev, S. Serbin, T. Butcher, and N. K. Tutu, “Flow structure investigations in a Tornado combustor,” in 4th International Energy Conversion Engineering Conference, AIAA2006-4141, Vol. 2, 2006, pp. 1001–1013, doi: 10.2514/6.2006-4141.
  29. O. Cherednichenko, S. Serbin, and M. Dzida, “Investigation of the combustion processes in the gas turbine module of an FPSO operating on associated gas conversion products,” Polish Maritime Research, Vol. 26, No. 4, pp. 149–156, 2020, doi: 10.2478/pomr-2019-0077.
  30. S. Serbin, K. Burunsuz, M. Dzida, J. Kowalski, and D. Chen, “Investigation of ecological parameters of a gas turbine combustion chamber with steam injection for the floating production, storage, and offloading vessel,” International Journal of Energy and Environmental Engineering, Vol. 13, No. 3, pp. 873–888, 2022, doi: 10.1007/s40095-021-00433-w.
  31. I. B. Matveev, N. V. Washchilenko, and S.I. Serbin, “Plasma-Assisted Reforming of Natural Gas for GTL: Part III - Gas Turbine Integrated GTL,” IEEE Trans. Plasma Sci., Vol. 43, No. 12, pp. 3969–3973, 2015, doi: /10.1109/TPS.2015.2464236.
DOI: https://doi.org/10.2478/pomr-2023-0063 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 102 - 109
Published on: Dec 11, 2023
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Volodymyr Korobko, Serhiy Serbin, Huu Cuong Le, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.