References
- A.T. Hoang et al., “Energy-related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway,” J. Clean. Prod., vol. 355, p. 131772, Jun. 2022, doi: 10.1016/j.jclepro.2022.131772.
- M. Julian, “MARPOL 73/78: the International Convention for the Prevention of Pollution from Ships,” Marit. Stud., vol. 2000, no. 113, 2000, doi: 10.1080/07266472.2000.10878605.
- EC, “Directive 2012/33/EU of the European Parliament and of the Council of 21 November 2012 amending Council Directive 1999/32/EC as regards the sulphur content of marine fuels,” OJ L, 2012.
- J. Liu, Q. Zhang, H. Li, S. Chen, and F. Teng, “Investment decision on carbon capture and utilisation (CCU) technologies—A real option model based on technology learning effect,” Appl. Energy, vol. 322, 2022, doi: 10.1016/j. apenergy.2022.119514.
- IMO - Marine Environment Protection Committee, “Reduction of GHG emissions from ships. Fourth IMO GHG Study 2020. MEPC 75/7/15.,” International Maritime Organization. 2020.
- P. Balcombe et al., “How to decarbonise international shipping: Options for fuels, technologies and policies,” Energy Conversion and Management. 2019, doi: 10.1016/j. enconman.2018.12.080.
- F. Baldi and A. Coraddu, “Towards halving shipping GHG emissions by 2050: the IMO introduces the CII and the EEXI,” in Sustainable Energy Systems on Ships, 2022.
- J. Herdzik, “Decarbonization of Marine Fuels—The Future of Shipping,” Energies, vol. 14, no. 14, p. 4311, Jul. 2021, doi: 10.3390/en14144311.
- A.T. Hoang and V.V. Pham, “A review on fuels used for marine diesel engines,” J. Mech. Eng. Res. Dev., vol. 41, no. 4, pp. 22–32, 2018.
- M. Dzida and W. Olszewski, “Comparing combined gas tubrine/steam turbine and marine low speed piston engine/steam turbine systems in naval applications,” Polish Marit. Res., vol. 18, no. 4, 2011, doi: 10.2478/v10012-011-0025-8.
- W. Olszewski and M. Dzida, “Selected Combined Power Systems Consisted of Self-Ignition Engine and Steam Turbine,” Polish Marit. Res., vol. 25, no. s1, 2018, doi: 10.2478/pomr-2018-0042.
- DNV, “Alternative fuels for containerships,” 2022.
- MAN Diesel & Turbo, “Using Methanol Fuel in the MAN B&W ME-LGI Series,” MAN. 2014.
- A.T. Hoang, “Waste heat recovery from diesel engines based on Organic Rankine Cycle,” Applied Energy, vol. 231. 2018, doi: 10.1016/j.apenergy.2018.09.022.
- “National policy framework for the development of alternative fuels infrastructure (in Polish). Ministry of Energy 2017” https://www.gov.pl/web/aktywa-panstwowe/rzad-przyjalkrajowe-ramy-polityki-rozwoju-infrastruktury-paliwalternatywnych-3.
- D. GL, “Comparison of Alternative Marine Fuels; DNV GL AS Maritime: Høvik, Norway,” 2019.
- K. Machaj et al., “Ammonia as a potential marine fuel: A review,” Energy Strategy Reviews, vol. 44. 2022, doi: 10.1016/j.esr.2022.100926.
- S. Giddey, S.P.S. Badwal, C. Munnings, and M. Dolan, “Ammonia as a Renewable Energy Transportation Media,” ACS Sustain. Chem. Eng., 2017, doi: 10.1021/acssuschemeng.7b02219.
- C.G. Okoye-Chine et al., “Conversion of carbon dioxide into fuels - A review,” Journal of CO2 Utilisation, vol. 62. 2022, doi: 10.1016/j.jcou.2022.102099.
- I. Domić, T. Stanivuk, L. Stazić, and I. Pavlović, “Analysis of LNG Carrier Propulsion Developments,” J. Appl. Eng. Sci., vol. 20, no. 4, 2022, doi: 10.5937/jaes0-36809.
- A. Szklo and R. Schaeffer, “Fuel specification, energy consumption and CO2 emission in oil refineries,” Energy, vol. 32, no. 7, 2007, doi: 10.1016/j.energy.2006.08.008.