Have a personal or library account? Click to login
Reverse Engineering-Inspired Parametric 3D Geometry Model of Marine Propeller Cover

Reverse Engineering-Inspired Parametric 3D Geometry Model of Marine Propeller

Open Access
|Oct 2023

References

  1. P. Król, “Blade section profile array lifting surface design method for marine screw propeller blade,” Polish Maritime Research, vol. 26, no. 4, 3919, pp.134-141, 2019. doi: /10.2478/pomr-2019-0075.
  2. P. Król, “Analysis of model-scale open-water test uncertainty,” Polish Maritime Research, vol. 29, no. 4, 3922, pp. 4-11, 2022. doi: /10.2478/pomr-2022-0039.
  3. A. Nadery and H. Ghassemi, “Numerical investigation of the hydrodynamic performance of the propeller behind the ship with and without Wed,” Polish Maritime Research, vol. 27, no. 4, 3920, pp. 50-59, 2020. doi: /10.2478/pomr-2020-0065.
  4. D. S. Greeley, “Numerical method for propeller design and analysis in steady flow,” SNAME Transactions, vol. 90, pp. 415-453, 1982.
  5. M. Diez, A. Serani, E. F. Campana, et al., “Design space dimensionality reduction for single-and multi-disciplinary shape optimization,” Proceedings of AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (MA&O). AVIATION 2016, Washington DC, USA. 13-17 June, 2016. doi: 10.2514/6.2016-4295.
  6. I. Marinić-Kragić, D. Vučina, and M. Ćurković, “Efficient shape parameterization method for multidisciplinary global optimization and application to integrated ship hull shape optimization workflow,” Computer-Aided Design, vol. 80, 2016, ISSN 0010-4485. doi: 10.1016/j.cad.2016.08.001.
  7. A. Miao, M. Zhao, and D. Wan, “CFD-based multi-objective optimisation of S60 Catamaran considering demihull shape and separation,” Applied Ocean Research, vol. 97, 2020. doi:10.1016/j.apor.2020.102071.
  8. A. Serani, F. Stern, E. F. Campana, et al., “Hull-form stochastic optimization via computational-cost reduction methods,” Engineering with Computers, vol. 38 (Suppl. 3), pp. 2245-2269, 2022. doi:10.1007/s00366-021-01375-x.
  9. S. Gaggero, “Numerical design of a RIM-driven thruster using a RANS-based optimization approach,” Applied Ocean Research, vol. 94, 101941, 2020. doi:10.1016/j. apor.2019.101941.
  10. S. Gaggero, J. Gonzalez-Adalid, and M. P. Sobrino, “Design and analysis of a new generation of CLT propellers,” Applied Ocean Research, vol. 59, pp. 424-450, 2016. doi:10.1016/j. apor.2016.06.014.
  11. S. Gaggero, G. Tani, D. Villa, M. Viviani, P. Ausonio, P. Travi, G. Bizzarri, and F. Serra, “Efficient and multi-objective cavitating propeller optimization: An application to a high-speed craft,” Applied Ocean Research, vol. 64, pp. 31-57, 2017. doi:10.1016/j.apor.2017.01.018.
  12. S. Gaggero, G. Vernengo, and D. Villa, “A marine propeller design method based on two-fidelity data levels,” Applied Ocean Research, vol. 123, 103156, 2022. doi:10.1016/j. apor.2022.103156.
  13. D. Bertetta, S. Brizzolara, S. Gaggero, M. Viviani, and L. Savio, “CPP propeller cavitation and noise optimization at different pitches with panel code and validation by cavitation tunnel measurements,” Ocean Engineering, vol. 53, pp. 177-195, 2012. doi:10.1016/j.oceaneng.2012.06.026.
  14. X. Ye, T. R. Jackson, and N. M. Patrikalakis, “Geometric design of functional surfaces,” Computer-Aided Design, vol. 28, no. 9, pp. 741-52, 1996. doi:10.1016/0010-4485(95)00080-1.
  15. G. W. Vickers, “Computer-aided manufacture of marine propellers,” Computer-Aided Design, vol. 9, no. 4, pp. 267-74, 1977. doi:10.1016/0010-4485(77)90008-2.
  16. Y. C. Kim, Y. M. Lee, M. J. Son, T. W. Kim, and J. C. Suh, “Generating cutter paths for marine propellers without interference and gouging,” Journal of Marine Science and Technology, vol. 14, no. 3, pp. 275-84, 2009. doi:10.1007/s00773-008-0033-2.
  17. C. S. Lee and J. H. Lee, “Geometric modeling and tool path generation of model propellers with a single setup change,” The International Journal of Advanced Manufacturing Technology, vol. 50, no. 1, pp. 253-63, 2010. doi:10.1007/s00170-009-2495-8.
  18. F. Pérez-Arribas and R. Pérez-Fernández, “B-spline design model for propeller blades,” Advances in Engineering Software, vol. 118, pp. 35-44, 2018. doi:10.1016/j. advengsoft.2018.01.005.
  19. A. Arapakopoulos, R. Polichshuk, Z. Segizbayev, S. Ospanov, A. I. Ginnis, and K. V.Kostas, “Parametric models for marine propellers,” Ocean Engineering, vol. 192, 106595, 2019. doi:10.1016/j.oceaneng.2019.106595.
  20. T. Várady, R. R. Martin, and J. Cox, “Reverse engineering of geometric models—an introduction,” Computer-Aided Design, vol. 29, no. 4, pp. 255–268, 1997. doi:10.1016/s0010-4485(96)00054-1.
  21. M. G. Cox, The numerical evaluation of B-splines. Technical report, National Physics Laboratory DNAC 4, 1971. doi:10.1093/imamat/10.2.134.
  22. C. De Boor, “On calculation with B-splines,” Journal of Approximation Theory, vol. 6, pp. 50–62, 1972. doi:https://doi.org/10.1016/0021-9045(72)90080-9.
  23. P. Lancaster and K. Salkauskas, “Surfaces generated by moving least squares methods,” Mathematics of Computation, vol. 37, no. 155, pp. 141-158, 1981. doi:10.2307/2007507.
  24. Q. H. Zeng and D. T. Lu, “Curve and surface fitting based on moving least-squares methods,” Journal of Engineering Graphics, vol. 25, no. 1, pp. 84-89, 2004. doi:1003-0158(2004)01-0084-06.
  25. A. Yazaki, E. Kuramochi, and T. Kumasaki, “Open water test series with modified AU-type four-bladed propeller models,” Journal of Zosen Kiokai, vol. 108, pp. 99-104, 1960.
  26. S. Leone, C. Testa, L. Greco, and F. Salvatore, “Computational analysis of self-pitching propellers performance in open water,” Ocean Engineering, vol. 64, pp. 122-134, 2013. doi: https://doi.org/10.1016/j.oceaneng.2013.02.012.
  27. W. Zhu and H. Gao, “Hydrodynamic characteristics of bioinspired marine propeller with various blade sections,” Ships and Offshore Structures, 2020. doi:10.1080/17445302.2020.1713039.
  28. S. Joe and F. Y. Kuo, “Remark on Algorithm 659: Implementing Sobol’s Quasirandom Sequence Generator,” ACM Transactions on Mathematical Software, vol. 29, no. 1, pp. 49–57, 2003. doi:10.1145/42288.214372.
DOI: https://doi.org/10.2478/pomr-2023-0037 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 35 - 47
Published on: Oct 10, 2023
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Long Zheng, Shunhuai Chen, Xinyu Chen, Shengchen Ji, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.