Have a personal or library account? Click to login
High Quality Multi-Zone and 3D CFD Model of Combustion in Marine Diesel Engine Cylinder Cover

High Quality Multi-Zone and 3D CFD Model of Combustion in Marine Diesel Engine Cylinder

Open Access
|Jul 2023

References

  1. M. H. Ghaemi, “Performance and emission modelling and simulation of marine diesel engines using publicly available engine data,” Polish Maritime Research, vol. 28(4), pp. 63‒87, 2021. https://doi.org/10.2478/pomr-2021-0050
  2. J. Shu, J. Fu, J. Liu, Y. Ma, S. Wang, B. Deng, and D. Zeng, “Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model,” Applied Energy, vol. 233–234, pp. 182‒195, 2019. https://doi.org/10.1016/j.apenergy.2018.10.040
  3. T. Poinsot and D. Veynante, Theoretical and numerical combustion. Edwards, 2005.
  4. F. Payri, P. Olmeda, J. Martín, and A. García, “A complete 0D thermodynamic predictive model for direct injection diesel engines,” Applied Energy, vol. 88, pp. 4632–4641, 2011. https://doi.10.1016/j.apenergy.2011.06.005
  5. K. K. Kuo, Principles of combustion. New Jersey, Wiley, 2005.
  6. S. Wang and L. Yao, “Effect of engine speeds and dimethyl ether on methyl decanoate HCCI combustion and emission characteristics based on low-speed two-stroke diesel engine,” Polish Maritime Research, vol. 27(2), pp. 85‒95, 2020. https://doi.org/10.2478/pomr-2020-0030
  7. H. Eichlseder and A. Wimmer, “Potential of IC-engines as minimum emission propulsion system,” Atmos. Environ., vol. 37(37), pp. 5227–5236, 2003. https://doi.org/10.1016/j.atmosenv.2003.05.001
  8. J. Carlton, Marine Propellers and Propulsion, 3rd ed. Elsevier Ltd., 2012.
  9. A. Sarvi, C. J. Fogelholm, and R. Zevenhoven, “Emissions from large-scale medium-speed diesel engines: 1. Influence of engine operation mode and turbocharger,” Fuel Processing Technology, vol. 89, pp. 510–519, 2008. https://doi.org/10.1016/j.fuproc.2007.10.006
  10. D. Agarwal, S. K. Singh, and A. K. Agarwal, “Effect of exhaust gas recirculation (EGR) on performance, emissions, deposits and durability of a constant speed compression ignition engine,” Applied Energy, vol. 88, pp. 2900–2907, 2011. https://doi.org/10.1016/j.apenergy.2011.01.066
  11. A. Sarvi, C. J. Fogelholm, and R. Zevenhoven, “Emissions from large-scale medium-speed diesel engines: 2. Influence of fuel type and operating mode,” Fuel Processing Technology, vol. 89, pp. 520–527, 2008. https://doi.org/10.1016/j.fuproc.2007.10.005
  12. O. Colin and A. Benkenida, “The 3-zones extended coherent flame model (ECFM3Z) for computing premixed/diffusion combustion,” Oil & Gas Science and Technology, vol. 59(6), pp. 593–609, 2004. https://doi.org/10.2516/ogst:2004043
  13. C. Rodriguez, M. Lamas, J. Rodriguez, and A. Abbas, “Analysis of the pre-injection system of a marine diesel engine through multiple-criteria decision-making and artificial neural networks,” Polish Maritime Research, vol. 28(4), pp. 88‒96, 2021. https://doi.org/10.2478/pomr-2021-0051
  14. Z. Korczewski, “Test method for determining the chemical emissions of a marine diesel engine exhaust in operation,” Polish Maritime Research, vol. 28(3), pp. 76‒87, 2020. https://doi.org/10.2478/pomr-2021-0035
  15. Z. Yang, Q. Tan, and P. Geng, “Combustion and emissions investigation on low-speed two-stroke marine diesel engine with low sulfur diesel fuel,” Polish Maritime Research, vol. 26(1), pp. 153‒161, 2011. https://doi.org/10.2478/pomr-2019-0017
  16. R. Zhao, L. Xu, X. Su, S. Feng, C. Li, Q. Tan, and Z. Wang, “A numerical and experimental study of marine hydrogen– natural gas–diesel tri-fuel engines,” Polish Maritime Research, vol. 27(4), pp. 80‒90, 2020. https://doi.org/10.2478/pomr-2020-0068
  17. G. Alegret, X. Llamas, M. Vejlgaard-Laursen, and L. Eriksson, “Modeling of a large marine two-stroke diesel engine with cylinder bypass valve and EGR system,” IFAC-PapersOnLine, vol. 48(16), pp. 273‒278, 2015. https://doi.org/10.1016/j.ifacol.2015.10.292
  18. F. Payri, J. Benajes, X. Margot, and A. Gil, “CFD modeling of the in-cylinder flow in direct-injection diesel engines,” Computers & Fluids, vol. 33, pp. 995–1021, 2004. https://doi.org/10.1016/j.compfluid.2003.09.003
  19. Z. Sahin and O. Durgun, “Multi-zone combustion modeling for the prediction of diesel engine cycles and engine performance parameters,” Applied Thermal Engineering, vol. 28, pp. 2245–2256, 2008. https://doi.org/10.1016/j.applthermaleng.2008.01.002
  20. J. Kowalski, Complete input data to CFD 3D model of combustion in the large marine 4-stroke engine, 2018. [Dataset]. https://doi.org/10.34808/0kbc-ny83.
  21. J. Kowalski, “An experimental study of emission and combustion characteristics of marine diesel engine with fuel pump malfunctions,” Appl. Therm. Eng., vol. 65(1–2), pp. 469–79, 2014. https://doi.org/10.1016/j.applthermaleng.2014.01.028
  22. J. Kowalski and P. Jaworski, “3D mesh model for RANS numerical research on marine 4-stroke engine,” Journal of Polish CIMAC, vol. 9(1), pp. 87–94, 2014.
  23. S. N. Soid and Z. A. Zainal, “Spray and combustion characterization for internal combustion engines using optical measuring techniques – A review,” Energy, vol. 36(2), pp. 724–741, 2011. https://doi.org/10.1016/j.energy.2010.11.022
  24. E. Delacourt, B. Desmet, and B. Besson, “Characterisation of very high pressure diesel sprays using digital imaging techniques,” Fuel, vol. 84(7–8), pp. 859–867, 2005. https://doi.org/10.1016/j.fuel.2004.12.003
  25. J. Grochowalska, J. Kowalski, Ł. J. Kapusta, and P. Jaworski, The experimental results of diesel fuel spray with marine engine injector, 2021. [Dataset]. https://doi.org/10.34808/c3aw-dq41.
  26. A. B. Liu and R. D. Reitz, Modeling the Effects of Drop Drag and Break-up on Fuel Sprays. SAE Technical Paper. 1993; 930072.
  27. T. Wakisaka et al., Numerical Prediction of Mixture Formation and Combustion Processes in Premixed Compression Ignition Engines. COMODIA, 2001.
  28. J. K. Dukowicz, Quasi-steady droplet change in the presence of convection. Informal Report, Los Alamos Scientific Laboratory, LA7997-MS.
  29. P. O’Rourke and A. Amsden, The TAB Method for Numerical Calculation of Spray Droplet Breakup. SAE Technical Paper, 1987, 872089.
  30. C. C. Chu and M. L. Corradini, “One-dimensional transient fluid model for fuel/coolant interaction analysis,” Nuclear Science and Engineering, vol. 101, pp. 48–71, 1989.
  31. C. Habchi and D. Verhoeven, Modeling Atomization and Break Up in High-Pressure Diesel Sprays. SAE Technical Paper, 1997, 970881.
  32. F. E. Marble and J. E. Broadwell, The Coherent Flame Model for Turbulent Chemical Reactions. Technical Report TRW-29314-6001-RU-00, USA, 1977.
  33. R. Mobasheri, Z. Peng, and S. M. Mirsalim, “Analysis the effect of advanced injection strategies on engine performance and pollutant emissions in a heavy duty DI-diesel engine by CFD modeling,” International Journal of Heat and Fluid Flow, vol. 33, pp. 59–69, 2012. https://doi.org/10.1016/j.ijheatfluidflow.2011.10.004
  34. R. Mobasheri and Z. Peng, “CFD investigation into diesel fuel injection schemes with aid of homogeneity factor,” Computers & Fluids, vol. 77, pp. 12–23, 2013. https://doi.org/10.1016/j.compfluid.2013.02.013
  35. H. Taghavifar, S. Khalilarya, and S. Jafarmadar, “Engine structure modifications effect on the flow behavior, combustion, and performance characteristics of DI diesel engine,” Energy Conversion and Management, vol. 85, pp. 20–32, 2014. https://doi.org/10.1016/j.enconman.2014.05.076
  36. S. Jafarmadar, “Exergy analysis of hydrogen/diesel combustion in a dual fuel engine using three-dimensional model,” International Journal of Hydrogen Energy, vol. 39, pp. 9505–9514, 2014. https://doi.org/10.1016/j.ijhydene.2014.03.152
  37. W. Park, J. Lee, K. Min, J. Yu, S. Park, and S. Cho, “Prediction of real-time NO based on the in-cylinder pressure in diesel engines,” in Proc. of the Combustion Institute, vol. 34, pp. 3075–3082, 2013. https://doi.org/10.1016/j.proci.2012.06.170
  38. R. Lebas, T. Menard, P. A. Beau, A. Berlemont, and F. X. Demoulin, “Numerical simulation of primary break-up and atomization: DNS and modelling study,” International Journal of Multiphase Flow, vol. 35, pp. 247–260, 2009. https://doi.org/10.1016/j.ijmultiphaseflow.2008.11.005
  39. K. Hanjalić, M. Popovac, and M. Hadžiabdić, “A robust near-wall elliptic relaxation eddy-viscosity turbulence model for CFD,” International Journal of Heat and Fluid Flow, vol. 25(6), pp. 1047–1051, 2004. https://doi.org/10.1016/j.ijheatfluidflow.2004.07.005
  40. B. Kaludercic, “Parallelisation of the Lagrangian model in a mixed Eulerian–Lagrangian CFD algorithm,” J. Parallel Distrib. Comput., vol. 64(2), pp. 277–284, 2004. https://doi.org/10.1016/j.jpdc.2003.11.010
  41. J. Donea and A. Huerta, Finite Element Methods for Flow Problems. Wiley, 2003.
  42. R. W. Lewis, P. Nithiarasu, and K. N. Seetharamu, Fundamentals of the Finite Element Method for Heat and Fluid Flow. Wiley, 2004.
  43. R. J. Goldstein, W. E. Ibele, and S. V. Patankar, “Heat transfer – A review of 2003 literature,” Int. J. Heat Mass Transf., vol. 49(3–4), pp. 451–534, 2006. https://doi.org/10.1016/j.ijheatmasstransfer.2005.11.001
  44. F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer. Wiley, 2001.
DOI: https://doi.org/10.2478/pomr-2023-0021 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 61 - 67
Published on: Jul 21, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Dominika Cuper-Przybylska, Van Nhanh Nguyen, Cao Dao Nam, Jerzy Kowalski, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.