Have a personal or library account? Click to login
Dynamic Positioning Capability Assessment Based on Optimal Thrust Allocation Cover

Dynamic Positioning Capability Assessment Based on Optimal Thrust Allocation

Open Access
|Jul 2023

References

  1. DNV, DNV-ST-0111, Assessment of station keeping capability of dynamic positioning vessels, DNV, 2021.
  2. M. Tomera, “Dynamic positioning system for a ship on harbour manoeuvring with different observers. Experimental Results,” Polish Maritime Research, 2014.
  3. M. Tomera, “Dynamic positioning system design for “Blue Lady”. Simulation tests,” Polish Maritime Research, 2012.
  4. T. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, 1st ed. New York: John Wiley, 2011.
  5. A. Sørensen, „Marine Control Systems. Propulsion and Motion Control of Ships and Ocean Structures,” Lecture Notes, Department of Marine Technology. Norwegian University of Science and Technology, 2013.
  6. C. de Wit, „Optimal thrust allocation methods for dynamic positioning of ships,” M.Sc. thesis, Delft University of Technology, 2009.
  7. S. Luke, “Essentials of Metaheuristics,” in Lecture Notes, Second Edition, 2016.
  8. J. Ming and Y. Bowen, „The optimal thrust allocation based on QPSO algorithm for dynamic positioning vessels,” Tianjin, China, 2014, doi: 10.1109/ICMA.2014.6885898.
  9. X. Yang, “Optimization and metaheuristic algorithms in engineering,” in Metaheuristics in Water, Geotechnical and Transport Engineering, Elsevier, 2013, pp. 1-23.
  10. G. Ding, P. Gao, X. Zhang, and Y. Wang, “Thrust allocation of dynamic positioning based on improved differential evolution algorithm,” in Proc. 39th Chinese Control Conference, Shenyang, China, doi: 10.23919/CCC50068.2020.9188704, 2020.
  11. R. Storn and K. Price, “Differential evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces,” Journal of Global Optimization, vol. 23, no. 1, 1995.
  12. D. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley, 1989.
  13. T. Baetz-Beielstein, „Overview: Evolutionary Algorithms,” Ph.D. project, Cologne University of Applied Sciences, 2014.
  14. M. Kochenderfer and T. Wheeler, Algorithms for Optimisation. MIT Press, 2019.
  15. E. Baeyens, A. Herreros, and J. Perán, “A direct search algorithm for global optioptimization,” Algorithms, vol. 9, no. 2, p. 40, 2016, https://doi.org/10.3390/a9020040.
  16. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002, doi: 1109/4235.996017.
  17. D. Gao, X. Wang, T. Wang, Y. Wang, and X. Xu, “Optimal thrust allocation strategy of electric propulsion ship based on improved non-dominated sorting genetic algorithm II,” IEEE Access, vol. 7, no. 1, pp.135247-135255, 2019, doi: 10.1109/ACCESS.2019.2942170, 2019.
  18. F. Mauro and R. Nabergoj, “Advantages and disadvantages of thruster allocation procedures in preliminary dynamic positioning predictions,” Ocean Eng., vol. 123, pp. 96-102, 2016, https://doi.org/10.1016/j.oceaneng.2016.06.045.
  19. O. Harkegard, “Dynamic control allocation using constrained quadratic programming,” J. Guid. Contr. Dynam., vol. 27, no. 6, pp. 1028–1034, 2004, https://doi.org/10.2514/1.11607.
  20. Y. Luo, A. Serrani, S. Yurkovich, D. B. Doman, and M. W. Oppenheimer, “Model predictive dynamic control allocation with actuator dynamics,” in IEEE Proc. 2004 American Control Conference, pp. 1695–1700, 2004, doi: 10.23919/ACC.2004.1386823.
  21. A. Witkowska and R. Śmierzchalski, “Adaptive backstepping tracking control for an over-actuated DP marine vessel with inertia uncertainties,” Int. J. Appl. Math. Comput. Sci., vol. 28, no. 4, pp. 679–693, 2018, doi: 10.2478/amcs-2018-0052.
  22. J. Tjønnås and T. Johansen, “Adaptive control allocation,” Automatica, vol. 44, pp. 2754-2766, 2008, https://doi.org/10.1016/j.automatica.2008.03.031.
  23. M. Valčič, „Optimization of thruster allocation for dynamically positioned marine vessels,” Doctoral thesis, University of Rijeka, 2020.
  24. E. Ruth, „Propulsion control and thrust allocation on marine vessels,” Doctoral thesis, Norwegian University of Science and Technology, 2008.
  25. L. Wang, J. Yang, and S. Xu, “Dynamic positioning capability analysis for marine vessels based on a DPCap polar plot program,” China Ocean Eng., vol. 32, no. 1, pp. 90-98, 2018, doi: 10.1007/s13344-018-0010-4.
  26. P. Zalewski, “Constraints in allocation of thrusters in a DP simulator,” Sci. J. Mar.Univ. Szczecin, vol. 52, no. 124, pp. 45-50, 2017, doi: 10.17402/244.
  27. P. Zalewski, “Convex optimization of thrust allocation in a dynamic positioning system,” Sci. J. Mar.Univ. Szczecin, vol. 48, no. 120, pp. 58-62, 2016, doi: 10.17402/176.
  28. D. Goldfarb and A. Idnani, “A numerically stable dual method for solving strictly convex quadratic programs,” Mathematical Programming, vol. 27, pp. 1-33, 1983.
DOI: https://doi.org/10.2478/pomr-2023-0019 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 28 - 38
Published on: Jul 21, 2023
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Agnieszka Piekło, Anna Witkowska, Tomasz Zubowicz, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.