Have a personal or library account? Click to login
Numerical Analysis of Resistance Characteristics of a Novel High-Speed Quadramaran Cover

Numerical Analysis of Resistance Characteristics of a Novel High-Speed Quadramaran

Open Access
|Jul 2023

References

  1. J. L. Yang, H. B. Sun, X. W. Li, and X. Liu, “Flow field characteristic analysis of cushion system of partial air cushion support catamaran in regular waves,” Polish Maritime Research, vol. 29, no. 3, pp. 35‒46, 2022. doi: 10.2478/pomr-2022-0024.
  2. J. L. Yang, Z. Lin, P. Li, Z. Q. Guo, H. B. Sun, and D. M. Yang, “Experimental investigations on the resistance performance of a high-speed partial air cushion supported catamaran,” International Journal of Naval Architecture and Ocean Engineering, vol. 12, pp. 38‒47, 2020. doi: 10.1016/j.ijnaoe.2019.05.004.
  3. S. W. Kim, G. W. Lee, and K. C. Seo, “The comparison on resistance performance and running attitude of asymmetric catamaran changing shape of tunnel stern exit region,” in Proc. 1st International Joint Conference on Materials Science and Mechanical Engineering, Bangkok, Thailand, February 2018. doi: 10.1088/1757-899X/383/1/012047.
  4. A. Honaryar, M. Ghiasi, P. F. Liu, and A. Honaryar, “A new phenomenon in interference effect on catamaran dynamic response,” International Journal of Mechanical Sciences, vol. 190, 106041, 2021. doi: 10.1016/j.ijmecsci.2020.106041.
  5. H. Wang, R. C. Zhu, L. Zha, and M. X. Gu, “Experimental and numerical investigation on the resistance characteristics of a high-speed planing catamaran in calm water,” Ocean Engineering, vol. 258, 11837, 2022. doi: 10.1016/j.oceaneng.2022.111837.
  6. Z. S. Dong, X. P. Gao, W. C. Dong, and X. P. Lu, “Supercritical twin-planing-hull (in Chinese),” Shipbuilding of China, vol. 41, no. 3. pp. 1‒7, Sep. 2000. doi: 10.3969/j.issn.1000-4882.2000.03.001.
  7. H. X. Peng, Numerical computation of multi-hull ship resistance and motion. Ph.D. thesis, Dalhousie University, Canada, 2001. URI: http://hdl.handle.net/10222/55750.
  8. B. Fang, X. P. Gao, and Z. S. Dong, “Performance of small waterplane area quad-hull’s resistance (in Chinese),” Journal of Naval University of Engineering, vol. 15, no. 1, pp. 70‒75, Feb. 2003. doi: 10.3969/j.issn.1009-3486.2003.01.018.
  9. X. G. Cai, H. B. Chang, and P. Wang, “Research about the wave-making resistance of multi-hull ship in the calm water (in Chinese),” Journal of Hydrodynamics, vol. 24, no. 6, pp. 713‒723, 2009. doi: 10.16076/j.cnki.cjhd.2009.06.009.
  10. Y. Zhang, L. Chen, Z. Y. Zhang, F. Yang, and L. Zheng, “Research on resistance of multi-hull ships with FLUENT (in Chinese),” Ship & Boat, vol. 23, no. 5, pp. 23‒30, Oct. 2012. doi: 10.3969/j.issn.1001-9855.2012.05.005.
  11. X. W. Liu and D. C. Wan, “Numerical analysis of wave interference among demihulls of high-speed quadramarans (in Chinese),” Shipbuilding of China, vol. 58, Special Issue, pp. 140‒151, Nov. 2017. [Online]. Available: http://qikan.cqvip.com/Qikan/Article/Detail?id=673742485&from=Qikan_Search_Index
  12. Yanuar, Gunawan, A. Muhyi, and A. Jamaluddin, “Ship resistance of quadramaran with various hull position configurations,” Journal of Marine Science and Application, vol. 15, pp. 28‒32, 2016. doi: 10.1007/s11804-016-1340-3.
  13. Yanuar, K. T. Waskito, and M. P. Widjaja, “Energy efficiency of high speed tetramaran ship model with minimum resistance configuration,” International Journal of Mechanical Engineering and Robotics Research, vol. 6, no. 4, pp. 263‒267, 2017. doi: 10.18178/ijmerr.6.4.263-267.
  14. A. Farkas, N. Degiuli, and I. Martic, “Numerical investigation into the interaction of resistance components for a series 60 catamaran,” Ocean Engineering, vol. 146, pp. 151‒169, 2017. doi: 10.1016/j.oceaneng.2017.09.043.
  15. J. F. Hu, Y. H. Zhang, P. Wang, and F. Qin, “Numerical and experimental study on resistance of asymmetric catamaran with different layouts,” Brodogradnja, vol. 71, no. 2, pp. 91‒110, 2020. doi: 10.21278/brod71206.
  16. A. Ebrahimi, R. Shafaghat, A. Hajiabadi and M. Yousefifard, “Numerical and experimental investigation of the aero-hydrodynamic effect on the behavior of a high-speed catamaran in calm water,” Journal of Marine Science and Application, vol. 21, pp. 56‒70, 2022. doi: 10.1007/s11804-022-00295-6.
  17. A. Li and Y. B. Li, “Numerical and experimental study on seakeeping performance of a high-speed trimaran with T-foil in head waves,” Polish Maritime Research, vol. 26, no. 3, pp. 65‒77, 2019. doi: 10.2478/pomr-2019-0047.
  18. M. Heidari, Z. Razaviyan, F. Yusof, E. Mohammadian, A. B. Alias, M. H. Akhbari, A. Akbari, and F. Movahedi, “Numerical analysis of side hull configuration in trimaran,” Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, vol. 35, no. 2, pp. 1‒31, 2019. doi: 10.23967/j.rimni.2019.06.004.
  19. B. Yildiz, B. Sener, S. Duman, and R. Datla, “A numerical and experimental study on the outrigger positioning of a trimaran hull in terms of resistance,” Ocean Engineering, vol. 198, 106938, 2020. doi: 10.1016/j.oceaneng.2020.106938.
  20. A. Nazemian and P. Ghadimi, “CFD-based optimization of a displacement trimaran hull for improving its calm water and wavy condition resistance,” Applied Ocean Research, vol. 113, 102729, 2021. doi: 10.1016/j.apor.2021.102729.
  21. J. D. Anderson, Computational Fluid Dynamics: The Basics with Applications. New York: McGraw-Hill, 1995.
  22. J. H. Ferziger, M. Perić, and R. L. Street, Computational Methods for Fluid Dynamics, 4th ed. 2020 Edition. Springer, 2019.
  23. User Guide, 2022. STAR CCM+ version 2022. SIEMENS Simcenter.
  24. K. V. Meredith, A. Heather, J. de Vries, and Y. Xin, “A numerical model for partially-wetted flow of thin liquid films,” Computational Methods in Multiphase Flow VI, vol. 70, pp. 239‒250, 2011. doi: 10.2495/MPF110201.
  25. H. Kazemi, M. M. Doustdar, A. Najafi, H. Nowruzi, and M. J. Ameri, “Hydrodynamic performance prediction of stepped planing craft using CFD and ANNs,” Journal of Marine Science and Application, vol. 20, pp. 67‒84, 2021. doi.org/10.1007/s11804-020-00182-y.
  26. P. Ghadimi, S. M. Sajedi, and M. Sheikholeslami, “Experimental study of the effects of V-shaped steps on the hydrodynamic performance of planing hulls,” Journal of Engineering for the Maritime Environment, vol. 237(1), pp. 238–256, 2023. doi: 10.1177/14750902221098304.
  27. ITTC, 2021. Recommended Procedures and Guidelines. Uncertainty Analysis in CFD Verification and Validation Methodology and Procedures. 7.5-03-01-01.
  28. ITTC, 2017. Recommended Procedures and Guidelines. Uncertainty Analysis in CFD, Examples for Resistance and Flow. 7.5-03-02-01.
  29. L. Birk, Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion. UK, Chichester: John Wiley, 2019.
  30. ITTC, 2014. Recommended Procedures and Guidelines. Practical Guidelines for Ship CFD Applications. 7.5-03-02-03.
  31. Z. H. Liu, W. T. Liu, Q. Chen, F. Y. Luo, and S. Zhai, “Resistance reduction technology research of high-speed ships based on a new type of bow appendage,” Ocean Engineering, vol. 206, 107246, 2020. doi.org/10.1016/j.oceaneng.2020.107246.
  32. O. Faltinsen, Hydrodynamics of High-Speed Marine Vehicles. Cambridge University Press, 2010.
DOI: https://doi.org/10.2478/pomr-2023-0018 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 11 - 27
Published on: Jul 21, 2023
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Xin Liu, Jinglei Yang, Defeng Wu, Liang Hou, Xiaowen Li, Qian Wan, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.