Have a personal or library account? Click to login
Evaluation of the Use of M2M-Type NB-IoT and LTE Technologies for Maritime Communication Systems Cover

Evaluation of the Use of M2M-Type NB-IoT and LTE Technologies for Maritime Communication Systems

Open Access
|Apr 2023

References

  1. A. Mishra, R. Kumar, A.M. Khalkho and D.K. Mohanta, ’An IoT Integrated Reliability Estimation of Wind Energy System,’ 2022 International Conference on IoT and Blockchain Technology (ICIBT), Ranchi, India, 2022, pp. 1-5, DOI: 10.1109/ICIBT52874.2022.9807704.
  2. N.P.G. Bhavani, P. Vaishnavi and K. Sujatha, ’Off-shore wind power as a pillar of energy transmission using IOT (OSWPETIOT),’ 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 2017, pp. 2494-2499, DOI: 10.1109/ICECDS.2017.8389901.
  3. S. Gajewski, ‘Maritime Communications Network Development Using Virtualised Network Slicing of 5G Network’, Nase More, Volume 67, No. 1. 2020, DOI: 10.17818/nm/2020/1.11.
  4. K. Nybom, W. Lund, S. Lafond, J. Lilius, J. Björkqvist, K. Suominen, and K. Tuulos, ‘Iot at Sea’, 2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). June 2018, DOI: 10.1109/BMSB.2018.8436741.
  5. T. Xia, M.M. Wang, J. Zhang, and L. Wang, ‘Maritime Internet of Things Challenges and Solutions’, IEEE Wireless Communications, Volume: 27, Issue: 2. April 2020, DOI: 10.1109/MWC.001.1900322.
  6. S. Ma, R. Yang, Y. Zuo, Y. Xiao, and T. Li, ‘A Review of Internet of things on sea’, IEEE, 2021 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC). June 2021, DOI: 10.1109/SPAC53836.2021.9539904.
  7. M. Sandra, S. Gunnarsson, and A.J. Johansson, ‘Internet of Buoys: An Internet of Things Implementation at Sea’, IEEE, 2020 54th Asilomar Conference on Signals, Systems, and Computers. November 2020, DOI: 10.1109/IEEECONF51394.2020.9443538.
  8. Recommendation ITU-R P.15-46-6 (08/2019), ‘Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 4000 MHz’, P Series Radiowave propagation. ITU-R Radiocommunication Sector of ITU. 2019.
  9. R. Burczyk, A. Czapiewska, M. Gajewska, and S. Gajewski, ‘LTE and NB-IoT Performance Estimation Based on Indicators Measured by the Radio Module’, Electronics, Volume 11. September 2022, DOI: 10.3390/electronics11182892.
  10. 3GPP TS 36.116, Evolved Universal Terrestrial Radio Access (E-UTRA); Relay radio transmission and reception (Release 17).
  11. X. Wang and S. Zhang, ‘Evaluation of multipath signal loss for AIS signals transmitted on the sea surface’, Ocean Engineering, Volume 146, Pages 9-20. December 2017.
  12. H. Arafat and M. Sangman, ‘Wireless Channel Models for Over-the-Sea Communication: A Comparative Study’, Applied Sciences. January 2019, DOI 10.3390/app9030443.
  13. J. Wang, H. Zhou, Y. Li, Q. Sun, Y. Wu, S. Jin, T.Q.S. Quek, and C. Xu, ‘Wireless Channel Models for Maritime Communications’, IEEE Access (Volume: 6). November 2018, DOI: 10.1109/ACCESS.2018.2879902.
  14. S.-W. Jo, J. H. Jang, and W.-S. Shim, ‘An analysis of path loss models of LTE-Maritime for mobile communication system in maritime enviroments’, IEEE 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC). November 2019, DOI: 10.1109/WPMC48795.2019.9096094.
  15. A. Mitayani, G.N. Nurkahfi, M.M.M. Dinata, V.A. Mardiana, N. Armi, C.B.A. Wael, and A.S. Satyawan, ‘Path Loss Model of the Maritime Wireless Communication in the Seas of Indonesia’, IEEE, 2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET). November 2020, DOI: 10.1109/ICRAMET51080.2020.9298652.
  16. D.W. Matolak and R. Sun, ‘Air-Ground Channel Characterization for Unmanned Aircraft Systems – Part I: Methods, Measurements and Models for Over-Water Setttings’, IEEE Transactions on Vehicular Technology, Volume: 66, Issue: 1. January 2017, DOI: 10.1109/TVT.2016.2530306.
  17. S. Gajewski, ‘Design of OFDM-based Radio Communication Systems for Coast-to-Sea and Coast-to-Air Propagation Environments’, Polish Maritime Research 23. April 2016, DOI: 10.1515/pomr-2016-0002.
  18. M. Zhu, X. Zhao, and Y. Zhang, ‘Study on a Sea Radio-wave Propagation Loss Model’, IEEE, 2010 International Conference on Communications and Mobile Computing. April 2010, DOI: 10.1109/CMC.2010.57.
  19. Y.H. Lee, F. Dong, and Y.S. Meng, ‘Near Sea-Surface Mobile Radiowave Propagation at 5 GHz: Measurement and Modeling’, Radioengineering, Vol, 23, No. 3. September 2014.
  20. M. Pinem, N. Syafrudin, A., H. Rambe, S. Suherman, and M. Zulfin, ‘Characterization of Path Loss for Radio Wave Propagation Over the Sea in 4G Network’, IEEE, 2020 4th International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM). September 2020, DOI: 10.1109/ELTICOM50775.2020.9230500.
  21. H. Holma and A. Toskala, ‘LTE for UMTS: Evolution to LTE-Advanced, 2nd Edition’, Wiley, March 2011.
DOI: https://doi.org/10.2478/pomr-2023-0013 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 126 - 134
Published on: Apr 19, 2023
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Slawomir Gajewski, Agnieszka Czapiewska, Małgorzata Gajewska, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.