Have a personal or library account? Click to login
Monitoring the Gas Turbine Start-Up Phase on a Platform Using a Hierarchical Model Based on Multi-Layer Perceptron Networks Cover

Monitoring the Gas Turbine Start-Up Phase on a Platform Using a Hierarchical Model Based on Multi-Layer Perceptron Networks

Open Access
|Dec 2022

References

  1. 1. O. Cherednichenko, S. Serbin, and M. Dzida, “Application of Thermo-chemical Technologies for Conversion of Associated Gas in Diesel-Gas Turbine Installations for Oil and Gas Floating Units,” Polish Marit. Res., vol. 26, no. 3, 2019, doi: 10.2478/pomr-2019-0059.
  2. 2. S. Serbin, K. Burunsuz, M. Dzida, J. Kowalski, and D. Chen, “Investigation of ecological parameters of a gas turbine combustion chamber with steam injection for the floating production, storage, and offloading vessel,” Int. J. Energy Environ. Eng., 2021, doi: 10.1007/s40095-021-00433-w.
  3. 3. V. Panov, “GasTurbolib-Simulink Library for Gas Turbine Engine Modelling”, Proceedings of ASME Turbo Expo 2009, GT2009, June 8-12, Orlando, Florida, USA, 2009, doi.org/10.1115/GT2009-59389.10.1115/GT2009-59389
  4. 4. S. Serbin, N. Washchilenko, M. Dzida, and J. Kowalski, “Parametric analysis of the efficiency of the combined gas-steam turbine unit of a hybrid cycle for the FPSO vessel”, Polish Marit. Res., vol. 28, no. 4, 2022, doi: 10.2478/pomr-2021-0054.
  5. 5. H. E. M. A. Shalan, M. A. Moustafa Hassan, A. B. G. Bahgat, “Comparative Study on Modelling of Gas Turbines in Combined Cycle Power Plants”, Proceedings of the 14th International Middle East Power Systems Conference (MEPCON’10), Cairo University, Egypt, December 19-21, Paper ID 317, 2010.
  6. 6. E. Tsoutsanis, N. Meskin, M. Benammar, K. Khorasani, “Dynamic Performance Simulation of an Aeroderivative Gas Turbine Using the Matlab Simulink Environment”, Proceedings of the ASME International Mechanical Engineering Congress & Exposition, November 2013, California, USA, 2013, doi.org/10.1115/IMECE2013-64102.10.1115/IMECE2013-64102
  7. 7. A. Lazzaretto, A. Toffolo, “Analytical and Neural Network Models for Gas Turbine Design and Off-Design Simulation”, Int. J. Appl. Thermodynam., vol. 4, no. 4, pp. 173–82, 2001.
  8. 8. S. Serbin, B. Diasamidze, and M. Dzida, “Investigations of the working process in a dual-fuel low-emission combustion chamber for an FPSO gas turbine engine” Polish Marit. Res., vol. 27, no. 3, 2020, doi: 10.2478/pomr-2020-0050.
  9. 9. A. Witkowska, T. Niksa-Rynkiewicz, “Dynamically positioned ship steering making use of backstepping method and artificial neural networks”, Polish Marit. Res., vol. 4, pp. 5-12, 2018, doi.org/10.2478/pomr-2018-0126.10.2478/pomr-2018-0126
  10. 10. M. Seera, C. P. Lim, S. Nahavandi, C. K. Loo, “Condition monitoring of induction motors: A review and an application of an ensemble of hybrid intelligent models”, Expert Systems with Applications, vol. 41, no. 10, pp. 4891-4903, 2014, doi. org/10.1109/INDEL.2016.7797800.10.1016/j.eswa.2014.02.028
  11. 11. T. Niksa-Rynkiewicz, N. Szewczuk-Krypa, A. Witkowska, K. Cpałka, M. Zalasiński, A. Cader, “Monitoring Regenerative Heat Exchanger in Steam Power Plant by Making Use of the Recurrent Neural Network”, Journal of Artificial Intelligence and Soft Computing Research, vol. 11, pp. 143-155, 2011, https://doi.org/10.2478/jaiscr-2021-0009.10.2478/jaiscr-2021-0009
  12. 12. H. R. Depold, F. D. Gass, “The application of expert systems and neural networks to gas turbine prognostics and diagnostics”, J. of Engineering for Gas Turbines and Power, vol. 121, no. 4, pp. 607-612, 1999, doi.org/10.1115/1.2818515.10.1115/1.2818515
  13. 13. H. Asgari, X. Chen, R. Sainudiin, M. Morini, M. Pinelli, P. R. Spina, M. Venturini, “Modeling and Simulation of the Start-Up Operation of a Heavy-Duty Gas Turbine by Using NARX Models” Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 3A: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration. Düsseldorf, Germany. June 16–20, 2014, V03AT21A003 ASME, doi.org/10.1115/GT2014-25056.10.1115/GT2014-25056
  14. 14. W. Molla Salilew, Z. Ambri, A. Karim, A. T. Baheta, “Review on gas turbine condition based diagnosis method” Materials Today: Proceedings, 2021, ISSN 2214-7853, doi. org/10.1016/j.matpr.2020.12.1049.10.1016/j.matpr.2020.12.1049
  15. 15. J. S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system” IEEE Transactions on Systems, Man and Cybernetics, vol. 23, no. 3, pp. 665-685, 1993, doi: 10.1109/21.256541.
  16. 16. B. Shahriari, A. N. Shahrbabaki, A. Shahriari, “Gas turbine fault detection and isolation using adaptive neurofuzzy inference system (ANFIS)” Advanced Materials Research, vol. 1016, pp. 721-725, 2014, doi: 10.4028/www.scientific.net/AMR.1016.721.10.4028/www.scientific.net/AMR.1016.721
  17. 17. Yu Zhang, S. Cruz-Manzo, A. Latimer, “Start-up vibration analysis for novelty detection on industrial gas turbines” 2016, doi: 10.1109/INDEL.2016.7797800.
  18. 18. S. Jafari; S. A. Miran Fashandi, T. Nikolaidis, “Modeling and Control of the Starter Motor and Start-Up Phase for Gas Turbines” Electronics, vol. 8, p. 363, 2019, doi.org/10.3390/electronics8030363.10.3390/electronics8030363
  19. 19. N. Chiras, C. Evans, D. Rees, “Nonlinear Gas Turbine Modelling Using Feedforward Neural Networks” 2002, doi: 10.1115/GT2002-30035.
  20. 20. T. Brotherton, G. Jahns, J. Jacobs and D. Wroblewski, “Prognosis of faults in gas turbine engines” 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484), vol. 6, pp. 163-171, 2000, doi: 10.1109/AERO.2000.877892.
  21. 21. M. Adamowicz, G. Żywica, “Advanced Gas Turbines Health Monitoring Systems” Diagnostyka, vol. 19, no. 2, pp. 77–87, 2018, doi: 10.29354/diag/89730.
  22. 22. J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, D. Siegel, “Prognostics and health management design for rotary machinery systems – Reviews, Methodology and Applications” Mechanical Systems and Signal Processing, vol. 42, pp. 314–334, 2014, doi.org/10.1016/j.ymssp.2013.06.004.10.1016/j.ymssp.2013.06.004
  23. 23. K. Kanelopoulos, A. Stamatis, K. Mathioudakis, “Incorporating Neural Networks into Gas Turbine Performance Diagnostics”, ASME paper, 97-GT-35, 1997, doi.org/10.1115/97-GT-035.10.1115/97-GT-035
  24. 24. M. D. Zeiler, Adadelta: “An Adaptive Learning Rate Method”, 2012.
DOI: https://doi.org/10.2478/pomr-2022-0050 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 123 - 131
Published on: Dec 21, 2022
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Tacjana Niksa-Rynkiewicz, Anna Witkowska, Jerzy Głuch, Marcin Adamowicz, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.