Have a personal or library account? Click to login
A Method for the Interpretation of Sonar Data Recorded during Autonomous Underwater Vehicle Missions Cover

A Method for the Interpretation of Sonar Data Recorded during Autonomous Underwater Vehicle Missions

Open Access
|Oct 2022

References

  1. 1. P. Smith Menandro and A. Cardoso Bastos, “Seabed Mapping: A Brief History from Meaningful Words”, Geosciences, vol. 10, no. 7, Art. no. 7, Jul. 2020, doi: <a href="https://doi.org/10.3390/geosciences10070273." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/geosciences10070273.</a>
  2. 2. T. Kogut and K. Bakuła, “Improvement of Full Waveform Airborne Laser Bathymetry Data Processing based on Waves of Neighbourhood Points”, Remote Sens., vol. 11, no. 10, Art. no. 10, Jan. 2019, doi: <a href="https://doi.org/10.3390/rs11101255." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/rs11101255.</a>
  3. 3. M. Żokowski, M. Chodnicki, P. Krogulec, and N. Sigiel, “Procedures concerning preparations of autonomous underwater systems to operation focused on detection, classification and identification of mine like objects and ammunition”, J. KONBiN, vol. 48, pp. 149–168, Dec. 2018, doi: <a href="https://doi.org/10.2478/jok-2018-0051." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/jok-2018-0051.</a>
  4. 4. S. Sivčev, J. Coleman, E. Omerdić, G. Dooly, and D. Toal, “Underwater manipulators: A review”, Ocean, Eng., vol. 163, pp. 431–450, Sep. 2018, doi: <a href="https://doi.org/10.1016/j.oceaneng.2018.06.018." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2018.06.018.</a>
  5. 5. C. Roman and R. Mather, “Autonomous Underwater Vehicles as Tools for Deep-Submergence Archaeology”, Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 224, no. 4, pp. 327–340, Nov. 2010, doi: <a href="https://doi.org/10.1243/14750902JEME202." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1243/14750902JEME202.</a>
  6. 6. L. A. Gonzalez, “Design, Modelling and Control of an Autonomous Underwater Vehicle”, Bachelor of Engineering Honours Thesis 2004, The University of Western Australia, 2004.
  7. 7. Y. Ji, S. Kwak, A. Yamashita, and H. Asama, “Acoustic camera-based 3D measurement of underwater objects through automated extraction and association of feature points”, IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst., vol. 0, pp. 224–230, 2016, doi: <a href="https://doi.org/10.1109/MFI.2016.7849493." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/MFI.2016.7849493.</a>
  8. 8. W. Kazimierski and G. Zaniewicz, “Determination of Process Noise for Underwater Target Tracking with Forward Looking Sonar”, Remote Sens., vol. 13, no. 5, Art. no. 5, Jan. 2021, doi: <a href="https://doi.org/10.3390/rs13051014." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/rs13051014.</a>
  9. 9. T. Zhang, S. Liu, X. He, H. Huang, and K. Hao, “Underwater Target Tracking Using Forward-Looking Sonar for Autonomous Underwater Vehicles”, Sensors, vol. 20, no. 1, p. 102, Dec. 2019, doi: <a href="https://doi.org/10.3390/s20010102.698277031878003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/s20010102.698277031878003</a>
  10. 10. O. Y. Sergiyenko and V. V. Tyrsa, “3D Optical Machine Vision Sensors with Intelligent Data Management for Robotic Swarm Navigation Improvement”, IEEE Sens. J., vol. 21, no. 10, Art. no. 10, 2021, doi: <a href="https://doi.org/10.1109/JSEN.2020.3007856." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/JSEN.2020.3007856.</a>
  11. 11. K. Bikonis, M. Moszyński, and Z. Łubniewski, “Application of Shape From Shading Technique for Side Scan Sonar Images”, Pol. Marit. Res., vol. 20, pp. 39–44, 2013, doi: <a href="https://doi.org/10.2478/pomr-2013-0033." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2013-0033.</a>
  12. 12. G. Grelowska, E. Kozaczka, and W. Szymczak, “Acoustic Imaging of Selected Areas of Gdansk Bay with the Aid of Parametric Echosounder and Side-Scan Sonar”, Pol. Marit. Res., vol. 24, no. 4, pp. 35–41, Dec. 2017, doi: <a href="https://doi.org/10.1515/pomr-2017-0133." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/pomr-2017-0133.</a>
  13. 13. J. M. Topple and J. A. Fawcett, “MiNet: Efficient Deep Learning Automatic Target Recognition for Small Autonomous Vehicles”, IEEE Geosci. Remote Sens. Lett., vol. 18, no. 6, pp. 1014–1018, Jun. 2021, doi: <a href="https://doi.org/10.1109/LGRS.2020.2993652." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/LGRS.2020.2993652.</a>
  14. 14. H. Yu, Z. Li, D. Li, and T. Shen, “Bottom Detection Method of Side-Scan Sonar Image for AUV Missions”, Complexity, vol. 2020, pp. 1–9, Oct. 2020, doi: <a href="https://doi.org/10.1155/2020/8890410." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1155/2020/8890410.</a>
  15. 15. X. Zhang, C. Tan, and W. Ying, “An Imaging Algorithm for Multireceiver Synthetic Aperture Sonar”, Remote Sens., vol. 11, no. 6, Art. no. 6, Jan. 2019, doi: <a href="https://doi.org/10.3390/rs11060672." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/rs11060672.</a>
  16. 16. W. Chen, L. Wang, Y. Zhang, X. Li, J. Liu, and W. Wang, “Anti-disturbance grabbing of underwater robot based on retinex image enhancement”, Chinese Automation Congress (CAC), Nov. 2019, pp. 2157–2162. doi: <a href="https://doi.org/10.1109/CAC48633.2019.8997332." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/CAC48633.2019.8997332.</a>
  17. 17. X. Wang, Q. Li, J. Yin, X. Han, and W. Hao, “An Adaptive De-noising and Detection Approach for Underwater Sonar Image”, Remote Sens., vol. 11, no. 4, Art. no. 4, Jan. 2019, doi: <a href="https://doi.org/10.3390/rs11040396." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/rs11040396.</a>
  18. 18. J. C. Isaacs, “Sonar automatic target recognition for underwater UXO remediation,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2015, pp. 134–140. doi: <a href="https://doi.org/10.1109/CVPRW.2015.7301307." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/CVPRW.2015.7301307.</a>
  19. 19. A. Waite, Sonar for Practising Engineers, 3 rd. Wiley: Hoboken, NJ, USA, 2002. Accessed: Jun. 15, 2021. [Online].Available: https://www.wiley.com/en-us/Sonar+for+Practising+Engineers%2C+3rd+Edition-p-9780471497509
  20. 20. R. Heremans, Y. Dupont, and M. Acheroy, “Motion Compensation in High Resolution Synthetic Aperture Sonar (SAS) Images”. IntechOpen, 2009. doi: <a href="https://doi.org/10.5772/39408." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5772/39408.</a>
  21. 21. F. Florin, F. Fohanno, I. Quidu, and J. Malkasse, “Synthetic Aperture and 3D Imaging for Mine Hunting Sonar”, Engineering, 2004, Accessed: Jun. 11, 2021. [Online]. Available:/paper/Synthetic-Aperture-and-3D-Imaging-for-Mine-Hunting-Florin-Fohanno/0cff43ea7dc424e21b9ed83d 256a2e25eda4a312
  22. 22. M. Zieja, M. Ważny, and S. Stępień, “Outline of a method for estimating the durability of components or device assemblies while maintaining the required reliability level”, Eksploat. Niezawodn. - Maint. Reliab., vol. 20, no. 2, 2018, doi: <a href="https://doi.org/10.17531/ein.2018.2.11." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.17531/ein.2018.2.11.</a>
  23. 23. D. T. Cobra, A. V. Oppenheim, and J. S. Jaffe, “Geometric distortions in Side-Scan Sonar images: A Procedure for their estimation and correction”, J. Ocean. Eng., vol. 17, no. 3, 1992.<a href="https://doi.org/10.1109/48.153442" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/48.153442</a>
  24. 24. M. Machado, P. Drews-Jr, P. Núñez, and S. Botelho, “Semantic Mapping on Underwater Environment Using Sonar Data”. 2016. doi: <a href="https://doi.org/10.1109/LARS-SBR.2016.48." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/LARS-SBR.2016.48.</a>
  25. 25. P. Blondel, The Handbook of Sidescan Sonar. Berlin Heidelberg: Springer-Verlag, 2009. doi: <a href="https://doi.org/10.1007/978-3-540-49886-5." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-540-49886-5.</a>
  26. 26. K. H. Talib, M. Y. Othman, S. A. H. Sulaiman, M. A. M. Wazir, and A. Azizan, “Determination of speed of sound using empirical equations and SVP”, in 2011 IEEE 7th International Colloquium on Signal Processing and its Applications, 2011, pp. 252–256.<a href="https://doi.org/10.1109/CSPA.2011.5759882" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/CSPA.2011.5759882</a>
  27. 27. R. J. Urick, Principles of Underwater Sound, 3rd ed. Peninsula Pub, 1996. Accessed: Jun. 03, 2021. [Online]. Available: https://www.abebooks.com/9780932146625/Principles-Underwater-Sound-3rd-Edition-0932146627/plp
  28. 28. X. Shang, J. Zhao, and H. Zhang, “Automatic Overlapping Area Determination and Segmentation for Multiple Side Scan Sonar Images Mosaic”, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 2886–2900, 2021, doi: <a href="https://doi.org/10.1109/JSTARS.2021.3061747." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/JSTARS.2021.3061747.</a>
  29. 29. J. Tęgowski and A. Zielinski, “Synthesis And Wavelet Analysis Of Side-Scan Sonar Sea Bottom Imagery”, Hydroacoustics, vol. 9, 2006.
  30. 30. A. K. Mishra and B. Mulgrew, “Automatic target recognition” in Encyclopedia of Aerospace Engineering, R. Blockley and W. Shyy, Eds. Chichester, UK: John Wiley & Sons, Ltd, 2010, p. eae281. doi: <a href="https://doi.org/10.1002/9780470686652.eae281." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/9780470686652.eae281.</a>
  31. 31. T. Praczyk, “Correction of Navigational Information Supplied to Biomimetic Autonomous Underwater Vehicle”, Pol. Marit. Res., vol. 25, no. 1, pp. 13–23, Mar. 2018, doi: <a href="https://doi.org/10.2478/pomr-2018-0002." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2018-0002.</a>
DOI: https://doi.org/10.2478/pomr-2022-0038 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 176 - 186
Published on: Oct 29, 2022
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Mariusz Zieja, Wojciech Wawrzyński, Justyna Tomaszewska, Norbert Sigiel, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.