1. P. Smith Menandro and A. Cardoso Bastos, “Seabed Mapping: A Brief History from Meaningful Words”, Geosciences, vol. 10, no. 7, Art. no. 7, Jul. 2020, doi: <a href="https://doi.org/10.3390/geosciences10070273." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/geosciences10070273.</a>
2. T. Kogut and K. Bakuła, “Improvement of Full Waveform Airborne Laser Bathymetry Data Processing based on Waves of Neighbourhood Points”, Remote Sens., vol. 11, no. 10, Art. no. 10, Jan. 2019, doi: <a href="https://doi.org/10.3390/rs11101255." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/rs11101255.</a>
3. M. Żokowski, M. Chodnicki, P. Krogulec, and N. Sigiel, “Procedures concerning preparations of autonomous underwater systems to operation focused on detection, classification and identification of mine like objects and ammunition”, J. KONBiN, vol. 48, pp. 149–168, Dec. 2018, doi: <a href="https://doi.org/10.2478/jok-2018-0051." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/jok-2018-0051.</a>
4. S. Sivčev, J. Coleman, E. Omerdić, G. Dooly, and D. Toal, “Underwater manipulators: A review”, Ocean, Eng., vol. 163, pp. 431–450, Sep. 2018, doi: <a href="https://doi.org/10.1016/j.oceaneng.2018.06.018." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2018.06.018.</a>
5. C. Roman and R. Mather, “Autonomous Underwater Vehicles as Tools for Deep-Submergence Archaeology”, Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 224, no. 4, pp. 327–340, Nov. 2010, doi: <a href="https://doi.org/10.1243/14750902JEME202." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1243/14750902JEME202.</a>
6. L. A. Gonzalez, “Design, Modelling and Control of an Autonomous Underwater Vehicle”, Bachelor of Engineering Honours Thesis 2004, The University of Western Australia, 2004.
7. Y. Ji, S. Kwak, A. Yamashita, and H. Asama, “Acoustic camera-based 3D measurement of underwater objects through automated extraction and association of feature points”, IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst., vol. 0, pp. 224–230, 2016, doi: <a href="https://doi.org/10.1109/MFI.2016.7849493." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/MFI.2016.7849493.</a>
9. T. Zhang, S. Liu, X. He, H. Huang, and K. Hao, “Underwater Target Tracking Using Forward-Looking Sonar for Autonomous Underwater Vehicles”, Sensors, vol. 20, no. 1, p. 102, Dec. 2019, doi: <a href="https://doi.org/10.3390/s20010102.698277031878003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/s20010102.698277031878003</a>
11. K. Bikonis, M. Moszyński, and Z. Łubniewski, “Application of Shape From Shading Technique for Side Scan Sonar Images”, Pol. Marit. Res., vol. 20, pp. 39–44, 2013, doi: <a href="https://doi.org/10.2478/pomr-2013-0033." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2013-0033.</a>
12. G. Grelowska, E. Kozaczka, and W. Szymczak, “Acoustic Imaging of Selected Areas of Gdansk Bay with the Aid of Parametric Echosounder and Side-Scan Sonar”, Pol. Marit. Res., vol. 24, no. 4, pp. 35–41, Dec. 2017, doi: <a href="https://doi.org/10.1515/pomr-2017-0133." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/pomr-2017-0133.</a>
13. J. M. Topple and J. A. Fawcett, “MiNet: Efficient Deep Learning Automatic Target Recognition for Small Autonomous Vehicles”, IEEE Geosci. Remote Sens. Lett., vol. 18, no. 6, pp. 1014–1018, Jun. 2021, doi: <a href="https://doi.org/10.1109/LGRS.2020.2993652." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/LGRS.2020.2993652.</a>
14. H. Yu, Z. Li, D. Li, and T. Shen, “Bottom Detection Method of Side-Scan Sonar Image for AUV Missions”, Complexity, vol. 2020, pp. 1–9, Oct. 2020, doi: <a href="https://doi.org/10.1155/2020/8890410." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1155/2020/8890410.</a>
16. W. Chen, L. Wang, Y. Zhang, X. Li, J. Liu, and W. Wang, “Anti-disturbance grabbing of underwater robot based on retinex image enhancement”, Chinese Automation Congress (CAC), Nov. 2019, pp. 2157–2162. doi: <a href="https://doi.org/10.1109/CAC48633.2019.8997332." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/CAC48633.2019.8997332.</a>
20. R. Heremans, Y. Dupont, and M. Acheroy, “Motion Compensation in High Resolution Synthetic Aperture Sonar (SAS) Images”. IntechOpen, 2009. doi: <a href="https://doi.org/10.5772/39408." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5772/39408.</a>
21. F. Florin, F. Fohanno, I. Quidu, and J. Malkasse, “Synthetic Aperture and 3D Imaging for Mine Hunting Sonar”, Engineering, 2004, Accessed: Jun. 11, 2021. [Online]. Available:/paper/Synthetic-Aperture-and-3D-Imaging-for-Mine-Hunting-Florin-Fohanno/0cff43ea7dc424e21b9ed83d 256a2e25eda4a312
22. M. Zieja, M. Ważny, and S. Stępień, “Outline of a method for estimating the durability of components or device assemblies while maintaining the required reliability level”, Eksploat. Niezawodn. - Maint. Reliab., vol. 20, no. 2, 2018, doi: <a href="https://doi.org/10.17531/ein.2018.2.11." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.17531/ein.2018.2.11.</a>
23. D. T. Cobra, A. V. Oppenheim, and J. S. Jaffe, “Geometric distortions in Side-Scan Sonar images: A Procedure for their estimation and correction”, J. Ocean. Eng., vol. 17, no. 3, 1992.<a href="https://doi.org/10.1109/48.153442" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/48.153442</a>
24. M. Machado, P. Drews-Jr, P. Núñez, and S. Botelho, “Semantic Mapping on Underwater Environment Using Sonar Data”. 2016. doi: <a href="https://doi.org/10.1109/LARS-SBR.2016.48." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/LARS-SBR.2016.48.</a>
25. P. Blondel, The Handbook of Sidescan Sonar. Berlin Heidelberg: Springer-Verlag, 2009. doi: <a href="https://doi.org/10.1007/978-3-540-49886-5." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-540-49886-5.</a>
26. K. H. Talib, M. Y. Othman, S. A. H. Sulaiman, M. A. M. Wazir, and A. Azizan, “Determination of speed of sound using empirical equations and SVP”, in 2011 IEEE 7th International Colloquium on Signal Processing and its Applications, 2011, pp. 252–256.<a href="https://doi.org/10.1109/CSPA.2011.5759882" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/CSPA.2011.5759882</a>
28. X. Shang, J. Zhao, and H. Zhang, “Automatic Overlapping Area Determination and Segmentation for Multiple Side Scan Sonar Images Mosaic”, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 2886–2900, 2021, doi: <a href="https://doi.org/10.1109/JSTARS.2021.3061747." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/JSTARS.2021.3061747.</a>
30. A. K. Mishra and B. Mulgrew, “Automatic target recognition” in Encyclopedia of Aerospace Engineering, R. Blockley and W. Shyy, Eds. Chichester, UK: John Wiley & Sons, Ltd, 2010, p. eae281. doi: <a href="https://doi.org/10.1002/9780470686652.eae281." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/9780470686652.eae281.</a>