Have a personal or library account? Click to login
A Method for the Interpretation of Sonar Data Recorded during Autonomous Underwater Vehicle Missions Cover

A Method for the Interpretation of Sonar Data Recorded during Autonomous Underwater Vehicle Missions

Open Access
|Oct 2022

References

  1. 1. P. Smith Menandro and A. Cardoso Bastos, “Seabed Mapping: A Brief History from Meaningful Words”, Geosciences, vol. 10, no. 7, Art. no. 7, Jul. 2020, doi: 10.3390/geosciences10070273.
  2. 2. T. Kogut and K. Bakuła, “Improvement of Full Waveform Airborne Laser Bathymetry Data Processing based on Waves of Neighbourhood Points”, Remote Sens., vol. 11, no. 10, Art. no. 10, Jan. 2019, doi: 10.3390/rs11101255.
  3. 3. M. Żokowski, M. Chodnicki, P. Krogulec, and N. Sigiel, “Procedures concerning preparations of autonomous underwater systems to operation focused on detection, classification and identification of mine like objects and ammunition”, J. KONBiN, vol. 48, pp. 149–168, Dec. 2018, doi: 10.2478/jok-2018-0051.
  4. 4. S. Sivčev, J. Coleman, E. Omerdić, G. Dooly, and D. Toal, “Underwater manipulators: A review”, Ocean, Eng., vol. 163, pp. 431–450, Sep. 2018, doi: 10.1016/j.oceaneng.2018.06.018.
  5. 5. C. Roman and R. Mather, “Autonomous Underwater Vehicles as Tools for Deep-Submergence Archaeology”, Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 224, no. 4, pp. 327–340, Nov. 2010, doi: 10.1243/14750902JEME202.
  6. 6. L. A. Gonzalez, “Design, Modelling and Control of an Autonomous Underwater Vehicle”, Bachelor of Engineering Honours Thesis 2004, The University of Western Australia, 2004.
  7. 7. Y. Ji, S. Kwak, A. Yamashita, and H. Asama, “Acoustic camera-based 3D measurement of underwater objects through automated extraction and association of feature points”, IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst., vol. 0, pp. 224–230, 2016, doi: 10.1109/MFI.2016.7849493.
  8. 8. W. Kazimierski and G. Zaniewicz, “Determination of Process Noise for Underwater Target Tracking with Forward Looking Sonar”, Remote Sens., vol. 13, no. 5, Art. no. 5, Jan. 2021, doi: 10.3390/rs13051014.
  9. 9. T. Zhang, S. Liu, X. He, H. Huang, and K. Hao, “Underwater Target Tracking Using Forward-Looking Sonar for Autonomous Underwater Vehicles”, Sensors, vol. 20, no. 1, p. 102, Dec. 2019, doi: 10.3390/s20010102.698277031878003
  10. 10. O. Y. Sergiyenko and V. V. Tyrsa, “3D Optical Machine Vision Sensors with Intelligent Data Management for Robotic Swarm Navigation Improvement”, IEEE Sens. J., vol. 21, no. 10, Art. no. 10, 2021, doi: 10.1109/JSEN.2020.3007856.
  11. 11. K. Bikonis, M. Moszyński, and Z. Łubniewski, “Application of Shape From Shading Technique for Side Scan Sonar Images”, Pol. Marit. Res., vol. 20, pp. 39–44, 2013, doi: 10.2478/pomr-2013-0033.
  12. 12. G. Grelowska, E. Kozaczka, and W. Szymczak, “Acoustic Imaging of Selected Areas of Gdansk Bay with the Aid of Parametric Echosounder and Side-Scan Sonar”, Pol. Marit. Res., vol. 24, no. 4, pp. 35–41, Dec. 2017, doi: 10.1515/pomr-2017-0133.
  13. 13. J. M. Topple and J. A. Fawcett, “MiNet: Efficient Deep Learning Automatic Target Recognition for Small Autonomous Vehicles”, IEEE Geosci. Remote Sens. Lett., vol. 18, no. 6, pp. 1014–1018, Jun. 2021, doi: 10.1109/LGRS.2020.2993652.
  14. 14. H. Yu, Z. Li, D. Li, and T. Shen, “Bottom Detection Method of Side-Scan Sonar Image for AUV Missions”, Complexity, vol. 2020, pp. 1–9, Oct. 2020, doi: 10.1155/2020/8890410.
  15. 15. X. Zhang, C. Tan, and W. Ying, “An Imaging Algorithm for Multireceiver Synthetic Aperture Sonar”, Remote Sens., vol. 11, no. 6, Art. no. 6, Jan. 2019, doi: 10.3390/rs11060672.
  16. 16. W. Chen, L. Wang, Y. Zhang, X. Li, J. Liu, and W. Wang, “Anti-disturbance grabbing of underwater robot based on retinex image enhancement”, Chinese Automation Congress (CAC), Nov. 2019, pp. 2157–2162. doi: 10.1109/CAC48633.2019.8997332.
  17. 17. X. Wang, Q. Li, J. Yin, X. Han, and W. Hao, “An Adaptive De-noising and Detection Approach for Underwater Sonar Image”, Remote Sens., vol. 11, no. 4, Art. no. 4, Jan. 2019, doi: 10.3390/rs11040396.
  18. 18. J. C. Isaacs, “Sonar automatic target recognition for underwater UXO remediation,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2015, pp. 134–140. doi: 10.1109/CVPRW.2015.7301307.
  19. 19. A. Waite, Sonar for Practising Engineers, 3 rd. Wiley: Hoboken, NJ, USA, 2002. Accessed: Jun. 15, 2021. [Online].Available: https://www.wiley.com/en-us/Sonar+for+Practising+Engineers%2C+3rd+Edition-p-9780471497509
  20. 20. R. Heremans, Y. Dupont, and M. Acheroy, “Motion Compensation in High Resolution Synthetic Aperture Sonar (SAS) Images”. IntechOpen, 2009. doi: 10.5772/39408.
  21. 21. F. Florin, F. Fohanno, I. Quidu, and J. Malkasse, “Synthetic Aperture and 3D Imaging for Mine Hunting Sonar”, Engineering, 2004, Accessed: Jun. 11, 2021. [Online]. Available:/paper/Synthetic-Aperture-and-3D-Imaging-for-Mine-Hunting-Florin-Fohanno/0cff43ea7dc424e21b9ed83d 256a2e25eda4a312
  22. 22. M. Zieja, M. Ważny, and S. Stępień, “Outline of a method for estimating the durability of components or device assemblies while maintaining the required reliability level”, Eksploat. Niezawodn. - Maint. Reliab., vol. 20, no. 2, 2018, doi: 10.17531/ein.2018.2.11.
  23. 23. D. T. Cobra, A. V. Oppenheim, and J. S. Jaffe, “Geometric distortions in Side-Scan Sonar images: A Procedure for their estimation and correction”, J. Ocean. Eng., vol. 17, no. 3, 1992.10.1109/48.153442
  24. 24. M. Machado, P. Drews-Jr, P. Núñez, and S. Botelho, “Semantic Mapping on Underwater Environment Using Sonar Data”. 2016. doi: 10.1109/LARS-SBR.2016.48.
  25. 25. P. Blondel, The Handbook of Sidescan Sonar. Berlin Heidelberg: Springer-Verlag, 2009. doi: 10.1007/978-3-540-49886-5.
  26. 26. K. H. Talib, M. Y. Othman, S. A. H. Sulaiman, M. A. M. Wazir, and A. Azizan, “Determination of speed of sound using empirical equations and SVP”, in 2011 IEEE 7th International Colloquium on Signal Processing and its Applications, 2011, pp. 252–256.10.1109/CSPA.2011.5759882
  27. 27. R. J. Urick, Principles of Underwater Sound, 3rd ed. Peninsula Pub, 1996. Accessed: Jun. 03, 2021. [Online]. Available: https://www.abebooks.com/9780932146625/Principles-Underwater-Sound-3rd-Edition-0932146627/plp
  28. 28. X. Shang, J. Zhao, and H. Zhang, “Automatic Overlapping Area Determination and Segmentation for Multiple Side Scan Sonar Images Mosaic”, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 2886–2900, 2021, doi: 10.1109/JSTARS.2021.3061747.
  29. 29. J. Tęgowski and A. Zielinski, “Synthesis And Wavelet Analysis Of Side-Scan Sonar Sea Bottom Imagery”, Hydroacoustics, vol. 9, 2006.
  30. 30. A. K. Mishra and B. Mulgrew, “Automatic target recognition” in Encyclopedia of Aerospace Engineering, R. Blockley and W. Shyy, Eds. Chichester, UK: John Wiley & Sons, Ltd, 2010, p. eae281. doi: 10.1002/9780470686652.eae281.
  31. 31. T. Praczyk, “Correction of Navigational Information Supplied to Biomimetic Autonomous Underwater Vehicle”, Pol. Marit. Res., vol. 25, no. 1, pp. 13–23, Mar. 2018, doi: 10.2478/pomr-2018-0002.
DOI: https://doi.org/10.2478/pomr-2022-0038 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 176 - 186
Published on: Oct 29, 2022
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Mariusz Zieja, Wojciech Wawrzyński, Justyna Tomaszewska, Norbert Sigiel, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.