1. M. A. Dulebenets, “A comprehensive multi-objective optimization model for the vessel scheduling problem in liner shipping,” Int. J. Prod. Econ., 2018, doi: <a href="https://doi.org/10.1016/j.ijpe.2017.10.027." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijpe.2017.10.027.</a>
2. R. Zaccone, E. Ottaviani, M. Figari, and M. Altosole, “Ship voyage optimization for safe and energy-efficient navigation: A dynamic programming approach,” Ocean Eng., 2018, doi: <a href="https://doi.org/10.1016/j.oceaneng.2018.01.100." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2018.01.100.</a>
3. R. Szłapczyński and H. Ghaemi, “Framework of an evolutionary multi-objective optimisation method for planning a safe trajectory for a marine autonomous surface ship,” Polish Marit. Res., 2020, doi: <a href="https://doi.org/10.2478/pomr-2019-0068." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-0068.</a>
5. L. Yang, G. Chen, N. G. M. Rytter, J. Zhao, and D. Yang, “A genetic algorithm-based grey-box model for ship fuel consumption prediction towards sustainable shipping,” Ann. Oper. Res., 2019, doi: <a href="https://doi.org/10.1007/s10479-019-03183-5." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10479-019-03183-5.</a>
6. A. Cheaitou and P. Cariou, “Greening of maritime transportation: a multi-objective optimization approach,” Ann. Oper. Res., 2019, doi: <a href="https://doi.org/10.1007/s10479-018-2786-2." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10479-018-2786-2.</a>
7. A. Priftis, E. Boulougouris, O. Turan, and G. Atzampos, “Multi-objective robust early stage ship design optimisation under uncertainty utilising surrogate models,” Ocean Eng., 2020, doi: <a href="https://doi.org/10.1016/j.oceaneng.2019.106850." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2019.106850.</a>
9. S. Zhang, B. Zhang, T. Tezdogan, L. Xu, and Y. Lai, “Computational fluid dynamics-based hull form optimization using approximation method,” Eng. Appl. Comput. Fluid Mech., 2018, doi: <a href="https://doi.org/10.1080/19942060.2017.1343751." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/19942060.2017.1343751.</a>
10. J. Čerka et al., “Optimization of the research vessel hull form by using numerical simulaton,” Ocean Eng., 2017, doi: <a href="https://doi.org/10.1016/j.oceaneng.2017.04.040." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2017.04.040.</a>
13. S. Su, Y. Zheng, J. Xu, and T. Wang, “Cabin Placement Layout Optimisation Based on Systematic Layout Planning and Genetic Algorithm,” Polish Marit. Res., 2020, doi: <a href="https://doi.org/10.2478/pomr-2020-0017." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-0017.</a>
14. Y. L. Wang, C. Wang, and Y. Lin, “Ship cabin layout optimization design based on the improved genetic algorithm method,” 2013, doi: <a href="https://doi.org/10.4028/www.scientific.net/AMM.300-301.146." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4028/www.scientific.net/AMM.300-301.146.</a>
15. J. Li, H. Guo, S. Zhang, X. Wu, and L. Shi, “Optimum Design of Ship Cabin Equipment Layout Based on SLP Method and Genetic Algorithm,” Math. Probl. Eng., 2019, doi: <a href="https://doi.org/10.1155/2019/9492583." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1155/2019/9492583.</a>
17. V. Bolbot, N. L. Trivyza, G. Theotokatos, E. Boulougouris, A. Rentizelas, and D. Vassalos, “Cruise ships power plant optimisation and comparative analysis,” Energy, 2020, doi: <a href="https://doi.org/10.1016/j.energy.2020.117061." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2020.117061.</a>
18. H. Ghassemi and H. Zakerdoost, “Ship hull-propeller system optimization based on the multi-objective evolutionary algorithm,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2017, doi: <a href="https://doi.org/10.1177/0954406215616655." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/0954406215616655.</a>
20. F. Vesting and R. E. Bensow, “Particle swarm optimization: an alternative in marine propeller optimization?,” Eng. Optim., 2018, doi: <a href="https://doi.org/10.1080/0305215X.2017.1302438." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/0305215X.2017.1302438.</a>
21. S. Mirjalili, A. Lewis, and S. A. M. Mirjalili, “Multi-objective optimisation of marine propellers,” 2015, doi: <a href="https://doi.org/10.1016/j.procs.2015.05.504." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.procs.2015.05.504.</a>
22. S. Gaggero et al., “Efficient and multi-objective cavitating propeller optimization: An application to a high-speed craft,” Appl. Ocean Res., 2017, doi: <a href="https://doi.org/10.1016/j.apor.2017.01.018." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.apor.2017.01.018.</a>
23. R. Zhao, X. Xie, and W. Yu, “Repair equipment allocation problem for a support-and-repair ship on a deep sea: A hybrid multi-criteria decision making and optimization approach,” Expert Syst. Appl., 2020, doi: <a href="https://doi.org/10.1016/j.eswa.2020.113658." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.eswa.2020.113658.</a>
24. A. K. Verma, A. Srividya, A. Rana, and S. K. Khattri, “Optimization of maintenance scheduling of ship borne machinery for improved reliability and reduced cost,” Int. J. Reliab. Qual. Saf. Eng., 2012, doi: <a href="https://doi.org/10.1142/S0218539312500143." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1142/S0218539312500143.</a>
25. Y. Zhao, Y. Fan, J. Zhou, and H. Kuang, “Bi-objective optimization of vessel speed and route for sustainable coastal shipping under the regulations of emission control areas,” Sustain., 2019, doi: <a href="https://doi.org/10.3390/su11226281." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/su11226281.</a>
27. K. Rudzki and W. Tarelko, “A decision-making system supporting selection of commanded outputs for a ship’s propulsion system with a controllable pitch propeller,” Ocean Eng., 2016, doi: <a href="https://doi.org/10.1016/j.oceaneng.2016.09.018." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2016.09.018.</a>
28. J. Kozak and W. Tarełko, “Case study of masts damage of the sail training vessel POGORIA,” Engineering Failure Analysis. 2011, doi: <a href="https://doi.org/10.1016/j.engfailanal.2010.11.016." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.engfailanal.2010.11.016.</a>
30. A. Tuan Hoang et al., “A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels,” Sustain. Energy Technol. Assessments, vol. 47, p. 101416, Oct. 2021, doi: <a href="https://doi.org/10.1016/j.seta.2021.101416." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.seta.2021.101416.</a>
31. W. Tarelko and K. Rudzki, “Applying artificial neural networks for modelling ship speed and fuel consumption,” Neural Computing and Applications. 2020, doi: <a href="https://doi.org/10.1007/s00521-020-05111-2." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00521-020-05111-2.</a>
32. R. Tadeusiewicz, “Neural network as a tool for medical signals filtering, diagnosis aid, therapy assistance and forecasting improving,” 2009, doi: <a href="https://doi.org/10.1007/978-3-642-03882-2-406." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-03882-2-406.</a>
35. R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods for engineering,” Structural and Multidisciplinary Optimization. 2004, doi: <a href="https://doi.org/10.1007/s00158-003-0368-6." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00158-003-0368-6.</a>