Have a personal or library account? Click to login
Optimization Model to Manage Ship Fuel Consumption and Navigation Time Cover

Optimization Model to Manage Ship Fuel Consumption and Navigation Time

Open Access
|Oct 2022

References

  1. 1. M. A. Dulebenets, “A comprehensive multi-objective optimization model for the vessel scheduling problem in liner shipping,” Int. J. Prod. Econ., 2018, doi: <a href="https://doi.org/10.1016/j.ijpe.2017.10.027." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijpe.2017.10.027.</a>
  2. 2. R. Zaccone, E. Ottaviani, M. Figari, and M. Altosole, “Ship voyage optimization for safe and energy-efficient navigation: A dynamic programming approach,” Ocean Eng., 2018, doi: <a href="https://doi.org/10.1016/j.oceaneng.2018.01.100." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2018.01.100.</a>
  3. 3. R. Szłapczyński and H. Ghaemi, “Framework of an evolutionary multi-objective optimisation method for planning a safe trajectory for a marine autonomous surface ship,” Polish Marit. Res., 2020, doi: <a href="https://doi.org/10.2478/pomr-2019-0068." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-0068.</a>
  4. 4. E. Sobecka, R. Szłapczynski, and M. Zyczkowski, “Evolutionary multi-objective weather routing of sailboats,” Polish Marit. Res., 2020, doi: <a href="https://doi.org/10.2478/pomr-2020-0054." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-0054.</a>
  5. 5. L. Yang, G. Chen, N. G. M. Rytter, J. Zhao, and D. Yang, “A genetic algorithm-based grey-box model for ship fuel consumption prediction towards sustainable shipping,” Ann. Oper. Res., 2019, doi: <a href="https://doi.org/10.1007/s10479-019-03183-5." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10479-019-03183-5.</a>
  6. 6. A. Cheaitou and P. Cariou, “Greening of maritime transportation: a multi-objective optimization approach,” Ann. Oper. Res., 2019, doi: <a href="https://doi.org/10.1007/s10479-018-2786-2." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10479-018-2786-2.</a>
  7. 7. A. Priftis, E. Boulougouris, O. Turan, and G. Atzampos, “Multi-objective robust early stage ship design optimisation under uncertainty utilising surrogate models,” Ocean Eng., 2020, doi: <a href="https://doi.org/10.1016/j.oceaneng.2019.106850." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2019.106850.</a>
  8. 8. T. P. Scholcz and C. H. J. Veldhuis, “Multi-objective surrogate based hull-form optimization using high-fidelity rans computations,” 2017.
  9. 9. S. Zhang, B. Zhang, T. Tezdogan, L. Xu, and Y. Lai, “Computational fluid dynamics-based hull form optimization using approximation method,” Eng. Appl. Comput. Fluid Mech., 2018, doi: <a href="https://doi.org/10.1080/19942060.2017.1343751." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/19942060.2017.1343751.</a>
  10. 10. J. Čerka et al., “Optimization of the research vessel hull form by using numerical simulaton,” Ocean Eng., 2017, doi: <a href="https://doi.org/10.1016/j.oceaneng.2017.04.040." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2017.04.040.</a>
  11. 11. Z. Baoji, “Research on Ship Hull Optimisation of High-Speed Ship Based on Viscous Flow/Potential Flow Theory,” Polish Marit. Res., 2020, doi: <a href="https://doi.org/10.2478/pomr-2020-0002." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-0002.</a>
  12. 12. A. I. Ölçer, “A hybrid approach for multi-objective combinatorial optimisation problems in ship design and shipping,” Comput. Oper. Res., 2008, doi: <a href="https://doi.org/10.1016/j.cor.2006.12.010." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cor.2006.12.010.</a>
  13. 13. S. Su, Y. Zheng, J. Xu, and T. Wang, “Cabin Placement Layout Optimisation Based on Systematic Layout Planning and Genetic Algorithm,” Polish Marit. Res., 2020, doi: <a href="https://doi.org/10.2478/pomr-2020-0017." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-0017.</a>
  14. 14. Y. L. Wang, C. Wang, and Y. Lin, “Ship cabin layout optimization design based on the improved genetic algorithm method,” 2013, doi: <a href="https://doi.org/10.4028/www.scientific.net/AMM.300-301.146." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4028/www.scientific.net/AMM.300-301.146.</a>
  15. 15. J. Li, H. Guo, S. Zhang, X. Wu, and L. Shi, “Optimum Design of Ship Cabin Equipment Layout Based on SLP Method and Genetic Algorithm,” Math. Probl. Eng., 2019, doi: <a href="https://doi.org/10.1155/2019/9492583." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1155/2019/9492583.</a>
  16. 16. X. Liu, Z. Liu, S. Yu, and T. Gong, “Adapted particle swarm optimization algorithm–based layout design optimization of passenger car cockpit for enhancing ergonomic reliability,” Adv. Mech. Eng., 2019, doi: <a href="https://doi.org/10.1177/1687814019837808." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/1687814019837808.</a>
  17. 17. V. Bolbot, N. L. Trivyza, G. Theotokatos, E. Boulougouris, A. Rentizelas, and D. Vassalos, “Cruise ships power plant optimisation and comparative analysis,” Energy, 2020, doi: <a href="https://doi.org/10.1016/j.energy.2020.117061." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2020.117061.</a>
  18. 18. H. Ghassemi and H. Zakerdoost, “Ship hull-propeller system optimization based on the multi-objective evolutionary algorithm,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2017, doi: <a href="https://doi.org/10.1177/0954406215616655." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/0954406215616655.</a>
  19. 19. John Huisman; Evert-Jan Foeth, “Automated multi-objective optimization of ship propellers,” 2017.
  20. 20. F. Vesting and R. E. Bensow, “Particle swarm optimization: an alternative in marine propeller optimization?,” Eng. Optim., 2018, doi: <a href="https://doi.org/10.1080/0305215X.2017.1302438." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/0305215X.2017.1302438.</a>
  21. 21. S. Mirjalili, A. Lewis, and S. A. M. Mirjalili, “Multi-objective optimisation of marine propellers,” 2015, doi: <a href="https://doi.org/10.1016/j.procs.2015.05.504." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.procs.2015.05.504.</a>
  22. 22. S. Gaggero et al., “Efficient and multi-objective cavitating propeller optimization: An application to a high-speed craft,” Appl. Ocean Res., 2017, doi: <a href="https://doi.org/10.1016/j.apor.2017.01.018." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.apor.2017.01.018.</a>
  23. 23. R. Zhao, X. Xie, and W. Yu, “Repair equipment allocation problem for a support-and-repair ship on a deep sea: A hybrid multi-criteria decision making and optimization approach,” Expert Syst. Appl., 2020, doi: <a href="https://doi.org/10.1016/j.eswa.2020.113658." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.eswa.2020.113658.</a>
  24. 24. A. K. Verma, A. Srividya, A. Rana, and S. K. Khattri, “Optimization of maintenance scheduling of ship borne machinery for improved reliability and reduced cost,” Int. J. Reliab. Qual. Saf. Eng., 2012, doi: <a href="https://doi.org/10.1142/S0218539312500143." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1142/S0218539312500143.</a>
  25. 25. Y. Zhao, Y. Fan, J. Zhou, and H. Kuang, “Bi-objective optimization of vessel speed and route for sustainable coastal shipping under the regulations of emission control areas,” Sustain., 2019, doi: <a href="https://doi.org/10.3390/su11226281." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/su11226281.</a>
  26. 26. K. Rudzki, “Two-objective optimization of engine ship propulsion settings with controllable pitch propeller using artificial neural networks,” Gdynia Maritime University, 2014.
  27. 27. K. Rudzki and W. Tarelko, “A decision-making system supporting selection of commanded outputs for a ship’s propulsion system with a controllable pitch propeller,” Ocean Eng., 2016, doi: <a href="https://doi.org/10.1016/j.oceaneng.2016.09.018." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2016.09.018.</a>
  28. 28. J. Kozak and W. Tarełko, “Case study of masts damage of the sail training vessel POGORIA,” Engineering Failure Analysis. 2011, doi: <a href="https://doi.org/10.1016/j.engfailanal.2010.11.016." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.engfailanal.2010.11.016.</a>
  29. 29. W. Tarełko, “The effect of hull biofouling on parameters characterising ship propulsion system efficiency,” Polish Marit. Res., 2014, doi: <a href="https://doi.org/10.2478/pomr-2014-0038." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2014-0038.</a>
  30. 30. A. Tuan Hoang et al., “A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels,” Sustain. Energy Technol. Assessments, vol. 47, p. 101416, Oct. 2021, doi: <a href="https://doi.org/10.1016/j.seta.2021.101416." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.seta.2021.101416.</a>
  31. 31. W. Tarelko and K. Rudzki, “Applying artificial neural networks for modelling ship speed and fuel consumption,” Neural Computing and Applications. 2020, doi: <a href="https://doi.org/10.1007/s00521-020-05111-2." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00521-020-05111-2.</a>
  32. 32. R. Tadeusiewicz, “Neural network as a tool for medical signals filtering, diagnosis aid, therapy assistance and forecasting improving,” 2009, doi: <a href="https://doi.org/10.1007/978-3-642-03882-2-406." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-03882-2-406.</a>
  33. 33. R. Matignon, “Neural Network Modeling using SAS Enterprise Miner,” AuthorHouse,London, 2005.
  34. 34. J. Andersson, “A survey of multiobjective optimization in engineering design,” 2000.
  35. 35. R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods for engineering,” Structural and Multidisciplinary Optimization. 2004, doi: <a href="https://doi.org/10.1007/s00158-003-0368-6." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00158-003-0368-6.</a>
DOI: https://doi.org/10.2478/pomr-2022-0034 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 141 - 153
Published on: Oct 29, 2022
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Krzysztof Rudzki, Piotr Gomulka, Anh Tuan Hoang, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.