1. B. Qiao, W. He, Y. Tian, Y. Liu, O. Cai, and Y. Li, “Ship emission reduction effect evaluation of air pollution control countermeasures,” Transportation Research Procedia, vol. 25, pp. 3606-3618, 2017, doi: <a href="https://doi.org/10.1016/j.trpro.2017.05.325." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.trpro.2017.05.325.</a>
3. V. Kuznetsov, B. Dymo, S. Kuznetsova, M. Bondarenko, and A. Voloshyn, “Improvement of the cargo fleet vessels power plants ecological indexes by development of the exhaust gas systems,” Polish Maritime Research, vol. 28, pp. 97-104, 2021, doi: <a href="https://doi.org/10.2478/pomr-2021-0009." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2021-0009.</a>
4. I. Ančić and A. Šestan, “Influence of the required EEDI reduction factor on the CO2 emission from bulk carriers,” Energy Policy, vol. 84, pp. 107-116, 2015, doi: <a href="https://doi.org/10.1016/j.enpol.2015.04.031." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enpol.2015.04.031.</a>
5. E.K. Hansen, H.B. Rasmussen, and M. Lützen, “Making shipping more carbon-friendly? Exploring ship energy efficiency management plans in legislation and practice,” Energy Research & Social Science, vol. 65, pp. 101459, 2020, doi: <a href="https://doi.org/10.1016/j.erss.2020.101459." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.erss.2020.101459.</a>
6. M. Kalajdžić, M. Vasilev, and N. Momčilović, “Power Reduction Considerations for Bulk Carriers with respect to Novel Energy Efficiency Regulations,” Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, vol. 73, pp. 79-92, 2022, doi: <a href="https://doi.org/10.21278/brod72205." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.21278/brod72205.</a>
7. L. Fedi, “The Monitoring, Reporting and Verification of Ships’ Carbon Dioxide Emissions: A European Substantial Policy Measure towards Accurate and Transparent Carbon Dioxide Quantification,” Ocean Yearbook Online, vol. 31, pp. 381-417, 2017, doi: <a href="https://doi.org/10.1163/22116001-03101015." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1163/22116001-03101015.</a>
9. P. Król, «Hydrodynamic state of art review: rotor–stator marine propulsor systems design,» Polish Maritime Research, vol. 28, pp. 72-82, 2021, doi: <a href="https://doi.org/10.2478/pomr-2021-0007." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2021-0007.</a>
10. P. Puzdrowska, «Diagnostic information analysis of quickly changing temperature of exhaust gas from marine diesel engine. Part i single factor analysis,» Polish Maritime Research, vol. 28, pp. 97-106, 2021, doi: <a href="https://doi.org/10.2478/pomr-2021-0052." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2021-0052.</a>
12. K. Rudzki and W. Tarelko, “A decision-making system supporting selection of commanded outputs for a ship’s propulsion system with a controllable pitch propeller,” Ocean Engineering, vol. 126, pp. 254-264, 2016, doi: <a href="https://doi.org/10.1016/j.oceaneng.2016.09.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2016.09.018</a>
13. R. Varbanets, V. Zalozh, A. Shakhov, I. Savelieva, and V. Piterska, “Determination of top dead centre location based on the marine diesel engine indicator diagram analysis,” Diagnostyka, vol. 21, pp. 51-60, 2020, doi: <a href="https://doi.org/10.29354/diag/116585." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.29354/diag/116585.</a>
14. S. Park, S. W. Park, S. H. Rhee, S. B. Lee, J. E. Choi, and S. H. Kang, “Investigation on the wall function implementation for the prediction of ship resistance,” International Journal of Naval Architecture and Ocean Engineering, vol. 5, pp. 33-46, 2013, doi: <a href="https://doi.org/10.2478/IJNAOE-2013-0116." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/IJNAOE-2013-0116.</a>
17. B.D. Brouer, C.V. Karsten, and D. Pisinger, “Big data optimisation in maritime logistics,” Big data optimisation: Recent developments and challenges. Springer, Cham, vol. 18, pp. 319-344, 2016, doi: <a href="https://doi.org/10.1007/978-3-319-30265-2_14." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-30265-2_14.</a>
18. X. Zeng and M. Chen, “A Novel Big Data Collection System for Ship Energy Efficiency Monitoring and Analysis Based on BeiDou System,” Journal of Advanced Transportation, vol. 2021, pp.1-10, 2021, doi: <a href="https://doi.org/10.1155/2021/9914720." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1155/2021/9914720.</a>
19. I. Zaman, K. Pazouki, R. Norman, S. Younessi, and S. Coleman, “Challenges and opportunities of big data analytics for upcoming regulations and future transformation of the shipping industry,” Procedia engineering, vol. 194, pp. 537-544, 2017, doi: <a href="https://doi.org/10.1016/j.proeng.2017.08.182." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.proeng.2017.08.182.</a>
20. A. Fan, X. Yan, and Q. Yin, “A multisource information system for monitoring and improving ship energy efficiency,” Journal of Coastal Research, vol.32, pp. 1235-1245, 2016, doi: <a href="https://doi.org/10.2112/JCOASTRES-D-15-00234.1." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2112/JCOASTRES-D-15-00234.1.</a>
21. J. Deng, J. Zeng, S. Mai, B. Jin, B. Yuan, Y. You. S. Lu, and M.Yang, «Analysis and prediction of ship energy efficiency using 6G big data internet of things and artificial intelligence technology,» International Journal of System Assurance Engineering and Management, vol. 12, pp. 824–834, 2021, doi: <a href="https://doi.org/10.1007/s13198-021-01116-9." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s13198-021-01116-9.</a>
22. T. Niksa-Rynkiewicz, N. Szewczuk-Krypa, A. Witkowska, K. Cpałka, M. Zalasiński, and A. Cader, “Monitoring regenerative heat exchanger in steam power plant by making use of the recurrent neural network,” Journal of Artificial Intelligence and Soft Computing Research, vol. 11, pp. 143-155, 2021, doi: <a href="https://doi.org/10.2478/jaiscr-2021-0009." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/jaiscr-2021-0009.</a>
23. A. Witkowska and T. Niksa-Rynkiewicz, «Dynamically positioned ship steering making use of backstepping method and artificial neural networks,» Polish Maritime Research, vol. 25, pp. 5-12, 2018, doi: <a href="https://doi.org/10.2478/pomr-2018-0126." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2018-0126.</a>
24. S. García, J. Luengo, and F. Herrera, “Data preprocessing in data mining,” Cham, Switzerland: Springer International Publishing, vol. 72, pp. 59-139, 2015, doi: <a href="https://doi.org/10.1007/978-3-319-10247-4." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-10247-4.</a>
25. L.P. Perera and B. Mo, “Ship performance and navigation information under high-dimensional digital models,” Journal of Marine Science and Technology, vol. 25(1), pp. 59-139, 2020, doi: <a href="https://doi.org/10.1007/978-3-319-10247-4." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-10247-4.</a>
26. Y. Raptodimos and I. Lazakis, “Using artificial neural network-self-organising map for data clustering of marine engine condition monitoring applications,” Ships and Offshore Structures, vol. 13, pp. 649-656, 2018, doi: <a href="https://doi.org/10.1080/17445302.2018.1443694." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17445302.2018.1443694.</a>
27. E. Vanem and A. Brandsæter, “Unsupervised anomaly detection based on clustering methods and sensor data on a marine diesel engine,” Journal of Marine Engineering & Technology, vol. 20, pp. 217-234, 2021, doi: <a href="https://doi.org/10.1080/20464177.2019.1633223." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/20464177.2019.1633223.</a>
28. L. P. Perera, and B. Mo, “Data analytics for capturing marine engine operating regions for ship performance monitoring,” International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers, 2016, Vol. 49989, doi: <a href="https://doi.org/10.1115/OMAE2016-54168" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1115/OMAE2016-54168</a>
29. L. P. Perera, and B. Mo, “Marine engine operating regions under principal component analysis to evaluate ship performance and navigation behaviour,” IFACPapersOnLine, vol. 49(23), pp. 512-517, 2016, doi: <a href="https://doi.org/10.1016/j.ifacol.2016.10.487." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ifacol.2016.10.487.</a>
30. X. Yan, K. Wang, Y. Yuan, X. Jiang, and R. R. Negenborn, “Energy-efficient shipping: An application of big data analysis for optimizing engine speed of inland ships considering multiple environmental factors,” Ocean Engineering, vol. 169, pp. 457-468, 2018, doi: <a href="https://doi.org/10.1016/j.oceaneng.2018.08.050." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2018.08.050.</a>
31. K. Wang, X. Yan, Y. Yuan, X. Jiang, G. Lodewijks, and R. R. Negenborn, «Study on route division for ship energy efficiency optimisation based on big environment data,» 2017 4th International Conference on Transportation Information and Safety (ICTIS), IEEE, pp. 111-116, 2017, doi: <a href="https://doi.org/10.1109/ICTIS.2017.8047752." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICTIS.2017.8047752.</a>
32. R. Adland, P. Cariou, H. Jia, and F. C. Wolff, “The energy efficiency effects of periodic ship hull cleaning,” Journal of Cleaner Production, vol. 178, pp. 1–13, 2018, doi: <a href="https://doi.org/10.1016/j.jclepro.2017.12.247." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jclepro.2017.12.247.</a>
33. O. Loyola-Gonzalez, “Black box vs. white-box: Understanding their advantages and weaknesses from a practical point of view, “ IEEE Access, vol. 7, pp. 154096–154113, 2019, doi: <a href="https://doi.org/10.1109/ACCESS.2019.2949286." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ACCESS.2019.2949286.</a>
34. X. Zeng, M. Chen, H. Li and X. Wu, “A Data-Driven Intelligent Energy Efficiency Management System for Ships,” IEEE Intelligent Transportation Systems Magazine, doi: <a href="https://doi.org/10.1109/MITS.2022.3153491." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/MITS.2022.3153491.</a>
35. M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” kdd, vol. 96, pp. 226-231, 1996.
36. R. Varbanets, V. Klymenko, O. Fomin, V. Píštěk, P. Kučera, D. Minchev, A. Khrulev, and V. Zalozh, “Acoustic method for estimation of marine low-speed engine turbocharger parameters,” Journal of Marine Science and Engineering, vol. 9, 2021, doi: <a href="https://doi.org/10.3390/jmse9030321." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/jmse9030321.</a>
37. A. GéRon, “Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems”. Sebastopol, CA, USA: O’Reilly Media, 2017.