Have a personal or library account? Click to login
Future Sustainable Maritime Sector: Energy Efficiency Improvement and Environmental Impact Reduction for Fishing Carriers Older than 20 Years in the Fleet Part II Cover

Future Sustainable Maritime Sector: Energy Efficiency Improvement and Environmental Impact Reduction for Fishing Carriers Older than 20 Years in the Fleet Part II

Open Access
|Oct 2022

References

  1. 1. Europa.eu. [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0240&rid=1. [Accessed: 28 Aug 2022].
  2. 2. “MarineTraffic: Global Ship Tracking Intelligence,” Marinetraffic.com. [Online]. Available: https://www.marinetraffic.com/en/ais/home/centerx:21.1/centery:28.1/zoom:2. [Accessed: 28 Aug 2022].
  3. 3. F. Tillig, W. Mao, and J. W. Ringsberg, “Systems modelling for energy-efficient shipping,” Transportportal. se. [Online]. Available: https://www.transportportal.se/Energieffektivitet/Systems%20modelling%20for%20energy-efficient%20shipping.pdf. [Accessed: 28 Aug 2022].
  4. 4. Rasanen, J.-E.; Schreiber, E.W. Using Variable Frequency Drives (VSD) to save energy and reduce emissions in newbuilds and existing ships, Energy efficient solutions, White Paper, ABB Marine and Cranes. Available online: https://library.e.abb.com/public/a2bd960ccd43d82ac1257b0200442327/VFD%20EnergyEfficiency_Rasanen_Schreiber_ABB_27%2004%202012.pdf [Accessed: 30 Sep 2022].
  5. 5. S. Dallas, “Power quality analysis for greener shipping by implementing an on-board electric power quality monitoring system,” J. Mar. Eng. Technol., vol. 21, no. 3, pp. 125–135, 2022, doi: 10.1080/20464177.2019.1658281
  6. 6. M. Jaurola, A. Hedin, S. Tikkanen, and K. Huhtala, “Optimising design and power management in energy-efficient marine vessel power systems: a literature review,” J. Mar. Eng. Technol., vol. 18, no. 2, pp. 92–101, 2019, doi: 10.1080/20464177.2018.1505584
  7. 7. I. Gospić, I. Glavan, I. Poljak, and V. Mrzljak, “Energy, economic and environmental effects of the marine diesel engine trigeneration energy systems,” J. Mar. Sci. Eng., vol. 9, no. 7, p. 773, 2021, https://doi.org/10.3390/jmse9070773
  8. 8. V. Palomba, G. E. Dino, R. Ghirlando, C. Micallef, and A. Frazzica, “Decarbonising the shipping sector: A critical analysis on the application of waste heat for refrigeration in fishing vessels,” Appl. Sci. (Basel), vol. 9, no. 23, p. 5143, 2019, doi:10.3390/app9235143
  9. 9. S. Du, “Thermal analysis of a forced flow diffusion absorption refrigeration system for fishing-boat exhaust waste heat utilization”, Front. Energy Res., vol. 9, 2021, doi: 10.3389/fenrg.2021.761135
  10. 10. Miro Petković, Marko Zubčić, Maja Krčum, Ivan Pavić “Wind assisted ship propulsion technologies – can they help in emissions reduction?,” Nase More, vol. 68, no. 2, pp. 102–109, 2021, doi:10.17818/NM/2021/2.6
  11. 11. D. Karkosiński, W. A. Rosiński, P. Deinrych, and S. Potrykus, “Onboard energy storage and power management systems for all-electric cargo vessel concept,” Energies, vol. 14, no. 4, p. 1048, 2021, https://doi.org/10.3390/en14041048
  12. 12. O. Farhat, J. Faraj, F. Hachem, C. Castelain, and M. Khaled, “A recent review on waste heat recovery methodologies and applications: Comprehensive review, critical analysis and potential recommendations,” Cleaner Engineering and Technology, vol. 6, no. 100387, p. 100387, 2022, https://doi.org/10.1016/j.clet.2021.100387.
  13. 13. J. Zhemin and Y. Yuxin, “Analysis of waste heat utilization of ship main engine,” E3S Web Conf., vol. 165, p. 06027, 2020, https://doi.org/10.1051/e3sconf/202016506027
  14. 14. Y. A. Chaboki, A. Khoshgard, G. Salehi, and F. Fazelpour, “Thermoeconomic analysis of a new waste heat recovery system for large marine diesel engine and comparison with two other configurations,” Energy Sources Recovery Util. Environ. Eff., pp. 1–26, 2020, doi: 10.1080/15567036.2020.1781298
  15. 15. L. Mihanović, M. Jelić, G. Radica, and N. Račić, “Experimental investigation of marine engine exhaust emissions,” Energy Sources Recovery Util. Environ. Eff., pp. 1–14, 2021, doi: 10.1080/15567036.2021.2013344
  16. 16. UN Environment, “About Montreal protocol,” Ozonaction, 29 Oct 2018. [Online]. Available: https://www.unep.org/ozonaction/who-we-are/about-montreal-protocol. [Accessed: 28 Aug 2022].
  17. 17. Unfccc.int, 1998. [Online]. Available: https://unfccc.int/resource/docs/cop3/07a01.pdf. [Accessed: 28 Aug 2022].
  18. 18. Europa.eu. [Online]. Available: https://ec.europa.eu/clima/system/files/2020-03/swd_2019_406_en.pdf. [Accessed: 28 Aug 2022].
  19. 19. “REFRIGERANT REPORT 21,” Bitzer-refrigerantreport.com. [Online]. Available: https://www.bitzerrefrigerantreport.com/fileadmin/Content/01_Startseite/A-501-21_EN.pdf. [Accessed: 28 Aug 2022].
  20. 20. J. Bodys, J. Smolka, and K. Banasiak, “Design and simulations of refrigerated sea water chillers with CO2 ejector pumps for marine applications in hot climates,” International Institute of Refrigeration (IIR), 2018, http://dx.doi.org/10.18462/iir.gl.2018.1244
  21. 21. А. N. Noskov, Thermal and structural calculation of a refrigeration screw compressor: Educational and methodological manual. ITMO University, 2015.
DOI: https://doi.org/10.2478/pomr-2022-0028 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 78 - 88
Published on: Oct 29, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Viktor Yalama, Olga Yakovleva, Volodymyr Trandafilov, Mykhailo Khmelniuk, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.