Have a personal or library account? Click to login
CFD Optimisation of the Longitudinal Volume Distribution of a Ship’s Hull by Constrained Transformation of the Sectional Area Curve Cover

CFD Optimisation of the Longitudinal Volume Distribution of a Ship’s Hull by Constrained Transformation of the Sectional Area Curve

Open Access
|Oct 2022

References

  1. 1. Y. Lu, J. Wu, W. Li and Y. Wu, ‘A new six-dof parallel mechanism for captive model test’, Polish Maritime Research, No. 3 (107), Vol. 27; pp. 4-15, 2020, DOI: 10.2478/pomr-2020-004127.
  2. 2. S. Bielicki, ‘Prediction of ship motions in irregular waves based on response amplitude operators evaluated experimentally in noise waves’, Polish Maritime Research, No. 1(109), Vol. 28, pp. 16-27, 2021, DOI: 10.2478/pomr-2021-0002.
  3. 3. Q. Wang, P. Yu, B. Zhang, G. Li, ‘Experimental Study and Numerical Simulation of the Water Entry of a Ship-Like Symmetry Section with an Obvious Bulbous Bow’, Polish Maritime Research, No. 3(111), Vol. 28, pp. 16-34, 2021, DOI: 10.2478/pomr-2021-0031.
  4. 4. A. Karczewski, M. Kunicka, ‘Influence of the Hull Shape on the Energy Demand of a Small Inland Vessel with Hybrid Propulsion’, Polish Maritime Research, No. 3(111), Vol. 28, pp. 16-34, 2021, DOI: 10.2478/pomr-2021-0032.
  5. 5. H.C. Raven, ‘A solution method for the nonlinear ship wave resistance problem’, Ph.D. dissertation, Delft Univ. Techn., 1996.
  6. 6. A. Stück, ‘Adjoint Navier-Stokes Methods for Hydrodynamic Shape Optimisation’, Ph.D. dissertation, Technische Universitat Hamburg-Harburg, 2012.
  7. 7. M. Gundelach, ‘Sketched Parametric Modeling in CFD Optimisation’, Master thesis, Feb/2017, University of Rostock, Germany.
  8. 8. H. Nowacki, D. Liu, and X. Lü, ‘Fairing bézier curves with constraints’, Computer Aided Geometric Design, 7(1–4), 43–55 (1990).10.1016/0167-8396(90)90020-R
  9. 9. S. Harries, ‘Parametric Design and Hydrodynamic Optimisation of Ship Hull Forms’, Mensch-und-Buch-Verlag, Berlin (1998).
  10. 10. S. Harries, C. Abt, ‘Parametric curve design applying fairness criteria’, International Workshop on Creating Fair and Shape-Preserving Curves and Surfaces (1998).
  11. 11. I. Biliotti, S. Brizzolara, M. Viviani, G. Vernengo, D. Ruscelli, M. Galliussi, D. Guadalupi, and A. Manfredini, ‘Automatic parametric hull form optimisation of fast naval vessels’, Proceedings of the Eleventh International Conference on Fast Sea Transportation (FAST 2011), 2011.
  12. 12. S. Han, Y.-S. Lee, and Y.B. Choi, ‘Hydrodynamic hull form optimisation using parametric models’, Journal of Marine Science and Technology, 17(1), 1–17, 2012, DOI: 10.1007/s00773-011-0148-8.
  13. 13. M. Brenner, V. Zagkas, S. Harries, and T. Stein, ‘Optimisation using viscous flow computations for retrofitting ships in operation’, Proceedings of the 5th International Conference on Computational Methods in Marine Engineering, MARINE, 2013.
  14. 14. Y. Feng, O. el Moctar, and T.E. Schellin, ‘Parametric Hull Form Optimisation of Containerships for Minimum Resistance in Calm Water and in Waves’, Journal of Marine Science and Application 20, 670–693, 2021. DOI: 10.1007/s11804-021-00243-w.
  15. 15. G. Vernengo, D. Villa, S. Gaggero, and M, Viviani, ‘Interactive design and variation of hull shapes: pros and cons of different CAD approaches’, International Journal on Interactive Design and Manufacturing, 14, pp. 103-114, 2020. DOI: 10.1007/s12008-019-00613-3.
  16. 16. D. Peri, and E.F. Campana, ‘Multidisciplinary design optimisation of a naval surface combatant’, Journal of Ship Research 47(1), 1–12, 2003, DOI: 10.5957/jsr.2003.47.1.1.10.5957/jsr.2003.47.1.1
  17. 17. F. Perez, and J.A. Clemente, ‘Constrained design of simple ship hulls with b-spline surfaces’, Computer Aided Design 43(12), 1829–1840, 2011, DOI:10.1016/j.cad.2011.07.008.
  18. 18. H.J. Choi, ‘Hull-form optimisation of a container ship based on bell-shaped modification function’, International Journal of Naval Architecture and Ocean Engineering 7(3), 478–489, 2015, DOI: 10.1515/ijnaoe-2015-0034.
  19. 19. G.G. Lorentz, ‘Bernstein Polynomials’, University of Toronto Press, 1953.
  20. 20. H. Lackenby, ‘On the systematic geometrical variation of ship forms’, Trans. INA 92, 289–315, 1950.
  21. 21. Y. Zhang, X. P. Wu, M. Y. Lai, G. P. Zhou and J. Zhang, ‘Feasibility Study of Rans in Predicting Propeller Cavitation in Behind-Hull Conditions’, Polish Maritime Research, No. 4(108), Vol. 27, pp. 26-35, 2020, DOI: 10.2478/pomr-2020-0063.
DOI: https://doi.org/10.2478/pomr-2022-0022 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 11 - 20
Published on: Oct 29, 2022
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Marek Kraskowski, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.