Have a personal or library account? Click to login
Automated Motion Heatmap Generation for Bridge Navigation Watch Monitoring System Cover

Automated Motion Heatmap Generation for Bridge Navigation Watch Monitoring System

By: Veysel Gokcek,  Gazi Kocak and  Yakup Genc  
Open Access
|Apr 2022

References

  1. 1. W. Qiao, Y. Liu, X. Ma, and Y. Liu, “A methodology to evaluate human factors contributed to maritime accident by mapping fuzzy FT into ANN based on HFACS,” Ocean Eng., vol. 197, p. 106892, 2020.
  2. 2. S. Fan, J. Zhang, E. Blanco-Davis, Z. Yang, and X. Yan, “Maritime accident prevention strategy formulation from a human factor perspective using Bayesian Networks and TOPSIS,” Ocean Eng., vol. 210, p. 107544, 2020.
  3. 3. K. Kulkarni, F. Goerlandt, J. Li, O. V. Banda, and P. Kujala, “Preventing shipping accidents: Past, present, and future of waterway risk management with Baltic Sea focus,” Saf. Sci., vol. 129, p. 104798, 2020.
  4. 4. V. Laine, F. Goerlandt, O. V. Banda, M. Baldauf, Y. Koldenhof, and J. Rytkönen, “A risk management framework for maritime Pollution Preparedness and Response: Concepts, processes and tools,” Mar. Pollut. Bull., vol. 171, p. 112724, 2021, doi: https://doi.org/10.1016/j.marpolbul.2021.112724.10.1016/j.marpolbul.2021.11272434303060
  5. 5. AGCS, “Safety and Shipping Review 2021,” Allianz Global Corporate and Speciality, 2021. https://www.agcs.allianz.com/content/dam/onemarketing/agcs/agcs/reports/AGCS-Safety-Shipping-Review-2021.pdf (accessed Sep. 09, 2021).
  6. 6. Y. Zhang, X. Sun, J. Chen, and C. Cheng, “Spatial patterns and characteristics of global maritime accidents,” Reliab. Eng. Syst. Saf., vol. 206, p. 107310, 2021.
  7. 7. K. Liu, Q. Yu, Z. Yuan, Z. Yang, and Y. Shu, “A systematic analysis for maritime accidents causation in Chinese coastal waters using machine learning approaches,” Ocean Coast. Manag., vol. 213, p. 105859, 2021.
  8. 8. A. Graziano, A. P. Teixeira, and C. G. Soares, “Classification of human errors in grounding and collision accidents using the TRACEr taxonomy,” Saf. Sci., vol. 86, pp. 245–257, 2016.10.1016/j.ssci.2016.02.026
  9. 9. IMO, STCW including 2010 Manila Amendments (ID938E), 2017th ed. London: International Maritime Organization, 2017.
  10. 10. M. Bull, Bridge Watchkeeping: A Practical Guide – 3rd Edition. The Nautical Institute, 2021.
  11. 11. M. Kaptan, Ö. Uğurlu, and J. Wang, “The effect of nonconformities encountered in the use of technology on the occurrence of collision, contact and grounding accidents,” Reliab. Eng. Syst. Saf., vol. 215, p. 107886, 2021.
  12. 12. IMO, IMO RESOLUTION MSC.128(75), Performance Standards for a Bridge Navigational Watch Alarm System (BNWAS), no. May. International Maritime Organization, 2002.
  13. 13. H. F. Nweke, Y. W. Teh, M. A. Al-Garadi, and U. R. Alo, “Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges,” Expert Syst. Appl., 2018.10.1016/j.eswa.2018.03.056
  14. 14. L. Onofri, P. Soda, M. Pechenizkiy, and G. Iannello, “A survey on using domain and contextual knowledge for human activity recognition in video streams,” Expert Syst. Appl., vol. 63, pp. 97–111, 2016.10.1016/j.eswa.2016.06.011
  15. 15. S. Bhattacharya and N. D. Lane, “From smart to deep: Robust activity recognition on smartwatches using deep learning,” in Pervasive Computing and Communication Workshops (PerCom Workshops), 2016 IEEE International Conference on, 2016, pp. 1–6.10.1109/PERCOMW.2016.7457169
  16. 16. Y. Jia, X. Song, J. Zhou, L. Liu, L. Nie, and D. S. Rosenblum, “Fusing Social Networks with Deep Learning for Volunteerism Tendency Prediction,” in AAAI, 2016, pp. 165–171.10.1609/aaai.v30i1.9985
  17. 17. A. Jalal, Y.-H. Kim, Y.-J. Kim, S. Kamal, and D. Kim, “Robust human activity recognition from depth video using spatiotemporal multi-fused features,” Pattern Recognit., vol. 61, pp. 295–308, 2017.10.1016/j.patcog.2016.08.003
  18. 18. Y. Fan, J. C. K. Lam, and V. O. K. Li, “Video-based Emotion Recognition Using Deeply-Supervised Neural Networks,” in Proceedings of the 2018 on International Conference on Multimodal Interaction, 2018, pp. 584–588.10.1145/3242969.3264978
  19. 19. N. Neverova, C. Wolf, G. W. Taylor, and F. Nebout, “Multi-scale deep learning for gesture detection and localization,” in Workshop at the European conference on computer vision, 2014, pp. 474–490.10.1007/978-3-319-16178-5_33
  20. 20. W. Zhang, Y. L. Murphey, T. Wang, and Q. Xu, “Driver yawning detection based on deep convolutional neural learning and robust nose tracking,” in Neural Networks (IJCNN), 2015 International Joint Conference on, 2015, pp. 1–8.
  21. 21. Y.-J. Han, W. Kim, and J.-S. Park, “Efficient Eye-Blinking Detection on Smartphones: A Hybrid Approach Based on Deep Learning,” Mob. Inf. Syst., vol. 2018, 2018.10.1155/2018/6929762
  22. 22. Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1, pp. 172–186, 2019.10.1109/TPAMI.2019.292925731331883
  23. 23. D. Wu, N. Sharma, and M. Blumenstein, “Recent advances in video-based human action recognition using deep learning: a review,” in Neural Networks (IJCNN), 2017 International Joint Conference on, 2017, pp. 2865–2872.
  24. 24. R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom., vol. 3, no. 4, pp. 323–344, 1987.10.1109/JRA.1987.1087109
  25. 25. P. F. Sturm and S. J. Maybank, “On plane-based camera calibration: A general algorithm, singularities, applications,” in Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on, 1999, vol. 1, pp. 432–437.
  26. 26. R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge university press, 2003.10.1017/CBO9780511811685
  27. 27. J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image correction,” in Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on, 1997, pp. 1106–1112.
  28. 28. J. Heikkila, “Geometric camera calibration using circular control points,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 10, pp. 1066–1077, 2000.
  29. 29. H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu, “Rmpe: Regional multi-person pose estimation,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2334–2343.
  30. 30. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2961–2969.
  31. 31. J. Wang et al., “Deep high-resolution representation learning for visual recognition,” IEEE Trans. Pattern Anal. Mach. Intell., 2020.
  32. 32. L. Pishchulin et al., “Deepcut: Joint subset partition and labeling for multi person pose estimation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 4929–4937.10.1109/CVPR.2016.533
  33. 33. H. Hirschmuller and S. Gehrig, “Stereo matching in the presence of sub-pixel calibration errors,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 437–444.10.1109/CVPR.2009.5206493
  34. 34. T. Yang, Q. Zhao, X. Wang, and Q. Zhou, “Sub-Pixel Chessboard Corner Localization for Camera Calibration and Pose Estimation,” Applied Sciences, vol. 8, no. 11. 2018, doi: 10.3390/app8112118.10.3390/app8112118
  35. 35. M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human pose estimation: New benchmark and state of the art analysis,” in Proceedings of the IEEE Conference on computer Vision and Pattern Recognition, 2014, pp. 3686–3693.10.1109/CVPR.2014.471
  36. 36. M. Kocabas, S. Karagoz, and E. Akbas, “Multiposenet: Fast multi-person pose estimation using pose residual network,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 417–433.10.1007/978-3-030-01252-6_26
DOI: https://doi.org/10.2478/pomr-2022-0007 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 63 - 75
Published on: Apr 26, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Veysel Gokcek, Gazi Kocak, Yakup Genc, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.