Have a personal or library account? Click to login
Heave Plates with Holes for Floating Offshore Wind Turbines Cover

Heave Plates with Holes for Floating Offshore Wind Turbines

Open Access
|Apr 2022

References

  1. 1. P. Dymarski, C. Dymarski, E. Ciba, (2019): “Stability Analysis of the Floating Offshore Wind Turbine Support Structure of Cell Spar Type during its Installation,” Polish Maritime Research, vol. 26, 4(104), 109-116.10.2478/pomr-2019-0072
  2. 2. H. A. Haslum, (2000): Simplified Methods Applied to Nonlinear Motion of Spar Platforms. Norwegian University of Science and Technology, Trondheim.
  3. 3. A. Subbulakshmi, R. Sundaravadivelu, (2016): “Heave damping of spar platform for offshore wind turbine with heave plate,” Ocean Engineering, vol. 121, pp. 24-36.10.1016/j.oceaneng.2016.05.009
  4. 4. L. Tao, S. Cai, (2004): “Heave Motion Suppression of a Spar with a Heave Plate,” Ocean Engineering.10.1016/j.oceaneng.2003.05.005
  5. 5. E. Ciba, (2021): “Heave Motion of a Vertical Cylinder with Heave Plates,” Polish Maritime Research, vol. 28, issue 1(109), pp. 42-47.10.2478/pomr-2021-0004
  6. 6. P.C. Mello, R.O.P Silva, E. Malta, L.H.S. Carno, (2019) Influence of heave plates on the dynamics of floating offshore wind turbine in waves, Conference Paper
  7. 7. L. Tao, D. Dray, (2008): “Hydrodynamic performance of solid and porous heave plates,” Ocean Engineering 35(10), doi:10.1016/j.oceaneng.2008.03.003[10.1016/j.oceaneng.2008.03.003
  8. 8. A. Song, O.M. Faltinsen, (2013): “An experimental and numerical study of heave added mass and damping of horizontally submerged and perforated rectangular plates,” Journal of Fluids and Structures, vol. 39, pp. 87-101.10.1016/j.jfluidstructs.2013.03.004
  9. 9. S. Holmes, P. Beynet, A. Sablock, I. Prislin, (2001): “Heave Plate Design with Computational Fluid Dynamics,” Journal of Offshore Mechanics and Arctic Engineering123(1).10.1115/1.1337096
  10. 10. L. Zhu, H.Ch. Lim, (2017): “Hydrodynamic characteristics of a separated heave plate mounted at a vertical circular cylinder,” Ocean Engineering, vol. 131, pp. 213-223.10.1016/j.oceaneng.2017.01.007
  11. 11. H. Gu, P. Stansby, T. Stallard, E. C. Moreno, (2018): “Drag, added mass and radiation damping of oscillating vertical cylindrical bodies in heave and surge in still water,” Journal of Fluid and Structures, vol. 82, pp. 343-356.10.1016/j.jfluidstructs.2018.06.012
  12. 12. B. Devolder, P. Troch, K. Rauwoens, (2019): “Accelerated numerical simulations of heaving floating body by coupling a motion solver with a two-phase fluid solver,” Computers & Mathematics with Applications77(6):1605-1625.10.1016/j.camwa.2018.08.064
  13. 13. A.J. Dunbar, B.A. Craven, E. G. Paterson, (2015): “Development and validation of tightly coupled CFD/6-DOF solver for simulating floating offshore wind turbine platforms,” Ocean Engineering, vol. 110, pp. 98-105.10.1016/j.oceaneng.2015.08.066
  14. 14. A. Maron, E. M. Fernandez, A. Valea, C. Lopez-Pavon, (2019): “Scale Effects on Heave Plates for Semi-Submersible Floating Offshore Wind Turbines: Case Study With a Solid Plain Plate,” Journal of Offshore Mechanics and Arctic Engineering142(3):1-14.10.1115/1.4045374
  15. 15. J. M. J. Journee, W. W. Massie, (2001): Offshore Hydromechanics. Delft University of Technology.
DOI: https://doi.org/10.2478/pomr-2022-0003 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 26 - 33
Published on: Apr 26, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Ewelina Ciba, Paweł Dymarski, Mirosław Grygorowicz, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.