3. Z. J. Zhang, D. Simionesie, and C. Schaschke, ‘Graphite and hybrid nanomaterials as lubricant additives’, Lubricants, vol.2, no. 2, pp. 44–65, 2014, doi: 10.3390/lubricants2020044.10.3390/lubricants2020044
4. A. Barszczewska, E. Piątkowska, and W. Litwin, ‘Selected Problems of Experimental Testing Marine Stern Tube Bearings’, Polish Marit. Res., vol. 26, no. 2, pp. 142–154, 2019, doi: 10.2478/pomr-2019-0034.10.2478/pomr-2019-0034
5. A. Barszczewska, ‘Experimental Research on Insufficient Water Lubrication of Marine Stern Tube Journal Bearing with Elastic Polymer Bush’, Polish Marit. Res., vol. 27, no.4, pp. 91–102, 2020, doi: 10.2478/pomr-2020-0069.10.2478/pomr-2020-0069
6. N. Vulić, K. Bratić, B. Lalić, and L. Stazić, ‘Implementing Simulationx in the Modelling of Marine Shafting Steady State Torsional Vibrations’, Polish Marit. Res., vol. 28, no.2, pp. 63–71, Jun. 2021, doi: 10.2478/pomr-2021-0022.10.2478/pomr-2021-0022
7. M. Moschopoulos, G. N. Rossopoulos, and C. I. Papadopoulos, ‘Journal Bearing Performance Prediction Using Machine Learning and Octave-Band Signal Analysis of Sound and Vibration Measurements’, Polish Marit. Res., vol. 28, no. 3, pp. 137–149, 2021, doi: 10.2478/pomr-2021-0041.10.2478/pomr-2021-0041
8. A. Ursolov, Y. Batrak, and W. Tarelko, ‘Application of the Optimization Methods to the Search of Marine Propulsion Shafting Global Equilibrium in Running Condition’, Polish Marit. Res., vol. 26, no. 3, pp. 172–180, 2019, doi: 10.2478/pomr-2019-0058.10.2478/pomr-2019-0058
9. H. Yang, J. Li, and X. Li, ‘Calculation of the Dynamic Characteristics of Ship’s Aft Stern Tube Bearing Considering Journal Deflection’, Polish Marit. Res., vol. 27, no. 1, pp. 107–115, 2020, doi: 10.2478/pomr-2020-0011.10.2478/pomr-2020-0011
11. J. Duchowski, ‘Filtration requirements for journal bearings exposed to different contaminant levels’, Lubr. Eng., vol.06, no. July, pp. 34–39, 2002, https://www.researchgate.net/publication/287750720_Filtration_requirements_for_journal_bearings_exposed_to_different_contaminant_levels.
12. D. Hargreaves and S. C. Sharma, ‘Effects of solid contaminants on journal bearing performance’, Proc. 2nd World Tribol. Congr. 3-7 Sept. 2001, pp. 237–240, 2001, https://figshare.com/articles/conference_contribution/Effects_of_solid_contaminants_on_journal_bearing_performance/13463030/1.
13. M. M. Khonsari and E. R. Booser, ‘Effect of contamination on the performance of hydrodynamic bearings’, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 220, no. 5, pp. 419–428, 2006, doi: 10.1243/13506501J00705.10.1243/13506501J00705
16. L. Peña-Parás et al., ‘Effects of substrate surface roughness and nano/micro particle additive size on friction and wear in lubricated sliding’, Tribol. Int., vol. 119, no. August 2017, pp. 88–98, 2018, doi: 10.1016/j.triboint.2017.09.009.10.1016/j.triboint.2017.09.009
19. A. Akchurin, R. Bosman, and P. M. Lugt, ‘A Stress-Criterion-Based Model for the Prediction of the Size of Wear Particles in Boundary Lubricated Contacts’, Tribol. Lett., vol. 64, no. 3, pp. 1–12, 2016, https://doi.org/10.1007/s11249-016-0772-x.10.1007/s11249-016-0772-x
20. G. Pintaude, ‘Characteristics of Abrasive Particles and Their Implications on Wear’, New Tribol. Ways, no. April 2011, 2012, https://www.researchgate.net/profile/Giuseppe-Pintaude/publication/221912389_Characteristics_of_Abrasive_Particles_and_Their_Implications_on_Wear/links/00b49525ef1357bd1d000000/Characteristics-of-Abrasive-Particles-and-Their-Implications-on-Wear.pdf.10.5772/14618
21. C. Q. Yuan, Z. Peng, X. C. Zhou, and X. P. Yan, ‘The characterization of wear transitions in sliding wear process contaminated with silica and iron powder’, Tribol. Int., vol.38, no. 2, pp. 129–143, 2005, 10.1016/j.triboint.2004.06.007.10.1016/j.triboint.2004.06.007
22. A. Ya and T. Yu, ‘Revealing the influence of various factors on concentration and spatial distribution of suspended matter based on remote sensing data’, Proc. SPIE, vol. 9638, pp. 1–12, 2015, https://doi.org/10.1117/12.2193905.10.1117/12.2193905
23. E. Szymczak and D. Burska, ‘Distribution of Suspended Sediment in the Gulf of Gdansk off the Vistula River mouth (Baltic Sea, Poland)’, IOP Conf. Ser. Earth Environ. Sci., vol. 221, no. 1, p. 012053, Mar. 2019, doi: 10.1088/1755-1315/221/1/012053.10.1088/1755-1315/221/1/012053
24. M. Damrat, A. Zaborska, and M. Zajaczkowski, ‘Sedimentation from suspension and sediment accumulation rate in the River Vistula prodelta, Gulf of Gdańsk (Baltic Sea)’, Oceanology, vol. 55, no. 4, pp. 937–950, 2013, doi:10.5697/oc.55-4.937.10.5697/oc.55-4.937
25. Geological Institute and Geology Institute, ‘Lithology and mineral composition of sediments from the bottom of the Gdańsk Basin’, vol. 313, no. 2, 1980, https://gq.pgi.gov.pl/article/viewFile/8797/pdf_830 (in Polish).
26. T. Leipe and B. Sea, ‘The kaolinite/chlorite clay mineral ratio in surface sediments of the southern Baltic Sea as an indicator for long distance transport of fine-grained material’, Baltica, vol. 16, pp. 31–36, 2003, https://gamtostyrimai.lt/uploads/publications/docs/211_37972ec38c101346e9b8223cb576dc8b.pdf.
27. Y. Solomonov, Experimental investigation of tribological characteristics of water-lubricated bearings materials on a pin-on-disc test rig, The University of Adelaide, School of Mechanical Engineering, Master of Philosophy Thesis, April 2014, https://digital.library.adelaide.edu.au/dspace/bitstream/2440/84676/8/02whole.pdf, https://hdl.handle.net/2440/84676.
28. C. L. Dong, C. Q. Yuan, X. Q. Bai, Y. Yang, and X. P. Yan, ‘Study on wear behaviours for NBR/stainless steel under sand water-lubricated conditions’, Wear, vol. 332–333, pp. 1012–1020, 2015, 10.1016/j.wear.2015.01.009.
29. C. Yuan, Z. Guo, W. Tao, C. Dong, and X. Bai, ‘Effects of different grain sized sands on wear behaviours of NBR/casting copper alloys’, Wear, vol. 384–385, pp. 185–191, Aug. 2017, doi: 10.1016/j.wear.2017.02.019.10.1016/j.wear.2017.02.019
30. T. Chang, Z. Guo, and C. Yuan, ‘Study on influence of Koch snowflake surface texture on tribological performance for marine water-lubricated bearings’, Tribol. Int., vol. 129, pp. 29–37, 2019, doi: 10.1016/j.triboint.2018.08.015.10.1016/j.triboint.2018.08.015
31. Z. Wu, C. Sheng, Z. Guo, F. Li, ‘Equivalent Calculate of the Equivalent Radius and the Tribological Performance of the Marine Water-Lubricated Bearing’, Mocaxue Xuebao/Tribology, vol. 37, no. 5, pp. 656–662, 2017, doi: 10.16078/j.tribology.2017.05.013.
32. Z. Jia, Z. Guo, C. Yuan, ‘Effect of Material Hardness on Water Lubrication Performance of Thermoplastic Polyurethane under Sediment Environment’, J. Mater. Eng. Perform., vol. 30, no. 10, pp. 7532–7541, 2021, doi: 10.1007/s11665-021-05912-z.10.1007/s11665-021-05912-z
33. X. Liang, Z. Guo, J. Tian, C. Yuan, ‘Development of modified polyacrylonitrile fibers for improving tribological performance characteristics of thermoplastic polyurethane material in water-lubricated sliding bearings’, Polym. Adv. Technol., vol. 31, no. 12, pp. 3258–3271, 2020, doi: 10.1002/pat.5050.10.1002/pat.5050
34. Z. Cui, Z. Guo, X. Xie, C. Yuan, ‘The Synergistic Effect Mechanism of PA66 Self-Lubrication Property and Surface Texture on Tribological Performance of HDPE Water-Lubricated Bearing’, Mocaxue Xuebao/Tribology, vol. 39, no. 4, pp. 407–417, 2019, doi: 10.16078/j.tribology.2018171.