Have a personal or library account? Click to login
Parametric analysis of the efficiency of the combined gas-steam turbine unit of a hybrid cycle for the FPSO vessel Cover

Parametric analysis of the efficiency of the combined gas-steam turbine unit of a hybrid cycle for the FPSO vessel

Open Access
|Jan 2022

References

  1. 1. Kehlhofer R. Combined-cycle gas and steam turbine power plants. Penn Well Publishing Co. 1997;388.
  2. 2. Carcasci C., Pacifici B., Winchler L., Cosi L., Ferraro R. Thermoeconomic Analysis of a One-Pressure Level Heat Recovery Steam Generator Considering Real Steam Turbine Cost. Energy Procedia 2015; 82:591-598.<a href="https://doi.org/10.1016/j.egypro.2015.11.877" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.egypro.2015.11.877</a>
  3. 3. Nirbito W., Arif Budiyanto M., Muliadi R. Performance Analysis of Combined Cycle with Air Breathing Derivative Gas Turbine, Heat Recovery Steam Generator, and Steam Turbine as LNG Tanker Main Engine Propulsion System. J. Mar. Sci. Eng. 2020; 8(726): 1-15.
  4. 4. Matveev I.B., Serbin S.I., Washchilenko V.N. Plasma-assisted treatment of sewage sludge. IEEE Trans. Plasma Sci. 2016; 44(12):3023-3027.<a href="https://doi.org/10.1109/TPS.2016.2604849" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TPS.2016.2604849</a>
  5. 5. Cheng D.Y., Nelson, A.L.C. The chronological development of the Cheng cycle steam injected gas turbine during the past 25 years. Proceeding of ASME Turbo Expo 2002, Amsterdam, GT-2002-30119. 2002;1-8.<a href="https://doi.org/10.1115/GT2002-30119" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1115/GT2002-30119</a>
  6. 6. Bondin Y.N., Krivutsa V.A., Movchan S.N., Romanov V.I., Kolomeev V.N., Shevtsov A.P. Operation experience of a gas turbine unit GPU-16K with steam injection. Gas Turbine Technologies 2004; 5:18-20 (in Russian).
  7. 7. Movchan S.N., Romanov V.V., Chobenko V.N., Shevtsov A.P. Contact Steam-and-Gas Turbine Units of the “AQUARIUS” Type: The Present Status and Future Prospects. Conference: ASME Turbo Expo 2009: Power for Land, Sea, and Air. 2009;1-7.<a href="https://doi.org/10.1115/GT2009-60339" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1115/GT2009-60339</a>
  8. 8. Romanovsky G.F., Washchilenko N.V., Serbin S.I. Theoretical bases of designing ship gas turbine units. Ukrainian State Maritime Technical University. 2003 (in Ukrainian).
  9. 9. Offshore Magazine. Leadon FPSO delivered on time, complete, within budget. 2002. https://www.offshore-mag.com/production/article/16759844/leadon-fpso-delivered-on-time-complete-within-budget.
  10. 10. Cherednichenko O., Serbin S., Dzida M. Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units. Polish Maritime Research 2019; 3(103):181-187.<a href="https://doi.org/10.2478/pomr-2019-0059" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-0059</a>
  11. 11. Ocyan. FPSO Cidade de Itajaí. 2017. https://api.ocyan-sa.com/sites/default/files/2018-09/cidade_do_itajai_0.pdf.
  12. 12. Offshore Technology. Triton Oil Field, North Sea Central. 2018. https://www.offshore-technology.com/projects/triton/.
  13. 13. Gas Turbine Engine UGT25000, https://zmturbines.com/en/serial-production/engines/ugt-25000/.
  14. 14. Gas Turbine World. 2004-05 GTW Handbook, Pequot Publishing Inc., 2006.
  15. 15. Serbin S.I., Kozlovskyi A.V., Burunsuz K.S. Investigations of non-stationary processes in low emissive gas turbine combustor with plasma assistance. IEEE Trans. Plasma Sci. 2016; 44(12):2960-2964.<a href="https://doi.org/10.1109/TPS.2016.2607461" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TPS.2016.2607461</a>
  16. 16. Matveev I.B., Serbin S.I., Vilkul V.V., Goncharova N.A. Synthesis Gas Afterburner Based on an Injector Type Plasma-Assisted Combustion System. IEEE Trans. Plasma Sci. 2015; 43(12):3974-3978.<a href="https://doi.org/10.1109/TPS.2015.2475125" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TPS.2015.2475125</a>
  17. 17. Matveev I., Serbin S., Mostipanenko A. Numerical optimization of the “Tornado” combustor aerodynamic parameters. Collection of Technical Papers. 45th AIAA Aerospace Sciences Meeting, Reno, Nevada, AIAA 2007-391. 2007; 7:4744-4755.
  18. 18. Magnussen B.F., Hjertager B.H. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. 16th Int. Symp. on Combustion. The Combustion Institute. 1976; 16(1):719-729.
  19. 19. 19. Launder B.E., Spalding D.B. Lectures in Mathematical Models of Turbulence. London: Academic Press; 1972.
  20. 20. Serbin S.I., Matveev I.B. Theoretical and experimental investigations of the plasma-assisted combustion and reformation system. IEEE Trans. Plasma Sci. 2010; 38(12):3306-3312.
  21. 21. Serbin S.I., Matveev I.B., Goncharova N.A. Plasma assisted reforming of natural gas for GTL. Part I. IEEE Trans. Plasma Sci. 2014; 42(12):3896-3900.<a href="https://doi.org/10.1109/TPS.2014.2353042" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TPS.2014.2353042</a>
DOI: https://doi.org/10.2478/pomr-2021-0054 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 122 - 132
Published on: Jan 1, 2022
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Serhiy Serbin, Nikolay Washchilenko, Marek Dzida, Jerzy Kowalski, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.