Have a personal or library account? Click to login
Research on the Application of Cold Energy of Largescale Lng-Powered Container Ships to Refrigerated Containers Cover

Research on the Application of Cold Energy of Largescale Lng-Powered Container Ships to Refrigerated Containers

Open Access
|Jan 2022

References

  1. 1. X. Gu, G. Jiang, Z. Guo, and S. Ding, ‘Design and Experiment of Low-Pressure Gas Supply System for Dual Fuel Engine’, Polish Marit. Res., vol. 27, no. 2, 2020, doi: <a href="https://doi.org/10.2478/pomr-2020-0029.10.2478/pomr-2020-0029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-0029.10.2478/pomr-2020-0029</a>
  2. 2. O. Cherednichenko, S. Serbin, and M. Dzida, ‘Application of Thermo-chemical Technologies for Conversion of Associated Gas in Diesel-Gas Turbine Installations for Oil and Gas Floating Units’, Polish Marit. Res., vol. 26, no. 3, 2019, doi: <a href="https://doi.org/10.2478/pomr-2019-0059.10.2478/pomr-2019-0059" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-0059.10.2478/pomr-2019-0059</a>
  3. 3. S. Serbin, B. Diasamidze, and M. Dzida, ‘Investigations of the working process in a dual-fuel low-emission combustion chamber for an fpso gas turbine engine’, Polish Marit. Res., vol. 27, no. 3, 2020, doi: <a href="https://doi.org/10.2478/pomr-2020-0050.10.2478/pomr-2020-0050" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-0050.10.2478/pomr-2020-0050</a>
  4. 4. T.C. Van, J. Ramirez, T. Rainey, et al. ‘Global impacts of recent IMO regulations on marine fuel oil refining processes and ship emissions’, Transportation Research Part D, vol. 70, 2019, doi: <a href="https://doi.org/10.1016/j.trd.2019.04.001.10.1016/j.trd.2019.04.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.trd.2019.04.001.10.1016/j.trd.2019.04.001</a>
  5. 5. L.P Perera, and B. Mo, ‘Emission Control Based Energy Efficiency Measures in Ship Operations’, Applied Ocean Research, vol. 60, 2016, doi: <a href="https://doi.org/10.1016/j.apor.2016.08.006.10.1016/j.apor.2016.08.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.apor.2016.08.006.10.1016/j.apor.2016.08.006</a>
  6. 6. H.P. Nguyen, A.T. Hoang, S. Nizetic, et al. ‘The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review’, International Transactions on Electrical Energy Systems, 2020, doi: <a href="https://doi.org/10.1002/2050-7038.12580.10.1002/2050-7038.12580" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/2050-7038.12580.10.1002/2050-7038.12580</a>
  7. 7. N.R. Sharma, D. Dimitrios, A.I. Ler, et al. ‘LNG a clean fuel the underlying potential to improve thermal efficiency’, Journal of Marine Engineering & Technology, 2020, doi: <a href="https://doi.org/10.1080/20464177.2020.1827491.10.1080/20464177.2020.1827491" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/20464177.2020.1827491.10.1080/20464177.2020.1827491</a>
  8. 8. I. Mallidis, S. Despoudi, R. Dekker, et al. ‘The impact of sulphur limit fuel regulations on maritime supply chain network design’, Annals of Operations Research, vol. 294, no. 8, 2018, doi: <a href="https://doi.org/10.1007/s10479-018-2999-4.10.1007/s10479-018-2999-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10479-018-2999-4.10.1007/s10479-018-2999-4</a>
  9. 9. L.B. Reinhardt, D. Pisinger, M.M. Sigurd, et al. ‘Speed optimizations for liner networks with business constraint’, European Journal of Operational Research, vol. 285, no. 3, 2020, doi: <a href="https://doi.org/10.1016/j.ejor.2020.02.043.10.1016/j.ejor.2020.02.043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ejor.2020.02.043.10.1016/j.ejor.2020.02.043</a>
  10. 10. Eun, Soo, and Jeong, ‘Optimization of power generating thermoelectric modules utilizing LNG cold energy’, Cryogenics, vol. 88, 2017, doi: <a href="https://doi.org/10.1016/j.cryogenics.2017.10.005.10.1016/j.cryogenics.2017.10.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cryogenics.2017.10.005.10.1016/j.cryogenics.2017.10.005</a>
  11. 11. O. Schinas, and M. Butler, ‘Feasibility and commercial considerations of LNG-fueled ships’, Ocean Engineering, vol. 122, 2016, doi: <a href="https://doi.org/10.1016/j.oceaneng.2016.04.031.10.1016/j.oceaneng.2016.04.031" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2016.04.031.10.1016/j.oceaneng.2016.04.031</a>
  12. 12. R. Zhao et al., ‘A Numerical and Experimental Study of Marine Hydrogen-Natural Gas-Diesel Tri-Fuel Engines’, Polish Marit. Res., vol. 27, no. 4, 2020, doi: <a href="https://doi.org/10.2478/pomr-2020-0068.10.2478/pomr-2020-0068" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-0068.10.2478/pomr-2020-0068</a>
  13. 13. M. Badami, J.C. Bruno, A. Coronas, and G. Fambri, ‘Analysis of different combined cycles and working fluids for LNG exergy recovery during regasification’, Energy, vol. 159, 2018, doi: <a href="https://doi.org/10.1016/j.energy.2018.06.10." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2018.06.10.</a>
  14. 14. B.B. Kanbur, L. Xiang, S. Dubey, F.H. Choo, and F. Duan, ‘Cold utilisation systems of LNG: a review’, Renewable and Sustainable Energy Reviews, vol. 79, 2017, doi: <a href="https://doi.org/10.1016/j.rser.2017.05.161.10.1016/j.rser.2017.05.161" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.rser.2017.05.161.10.1016/j.rser.2017.05.161</a>
  15. 15. J. Dong, S. Huang, S. Li, Y. Yao, Y. Jiang, ‘LNG cold energy used in cold storage refrigeration performance simulation research’, Journal of Harbin Institute of Technology, vol. 49, no. 2, 2017.
  16. 16. T. Banaszkiewicz, ‘The Possible Coupling of LNG Regasification Process with the TSA Method of Oxygen Separation from Atmospheric Air’, Entropy, vol. 23, no. 3, 2021, doi: <a href="https://doi.org/10.3390/e23030350.10.3390/e23030350" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/e23030350.10.3390/e23030350</a>
  17. 17. W. Lin, M. Huang, H. He, et al., ‘A transcritical CO2 Rankine Cycle with LNG cold energy utilisation and liquefaction of CO2 in gas turbine exhaust’, Journal of Energy Resources Technology, vol. 131, no. 4, 2009, doi: <a href="https://doi.org/10.1115/1.4000176.10.1115/1.4000176" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1115/1.4000176.10.1115/1.4000176</a>
  18. 18. T. Jin, J.J. Hu, G.B. Chen, and K. Tang, ‘Novel air separation unit cooled by liquefied natural gas cold energy and its performance analysis’, Journal of Zhejiang University, vol. 41, no. 5, 2007.
  19. 19. E. Baldasso, M.E. Mondejar, S. Mazzoni, et al., ‘Potential of liquefied natural gas cold energy recovery on board ships’, Journal of Cleaner Production, vol. 271, 2020, doi: <a href="https://doi.org/10.1016/j.jclepro.2020.122519.10.1016/j.jclepro.2020.122519" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jclepro.2020.122519.10.1016/j.jclepro.2020.122519</a>
  20. 20. H.L. Sang, and K. Park, ‘Conceptual design and economic analysis of a novel cogeneration desalination process using LNG based on clathrate hydrate’, Desalination, vol. 498, 2021, doi: <a href="https://doi.org/10.1016/j.desal.2020.114703.10.1016/j.desal.2020.114703" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.desal.2020.114703.10.1016/j.desal.2020.114703</a>
  21. 21. P. Babu, A. Nambiar, R.C. Zheng, et al., ‘Hydrate-based desalination (HyDesal) process employing a novel prototype design’, Chemical Engineering Science, vol. 218, 2020, doi: <a href="https://doi.org/10.1016/j.ces.2020.115563.10.1016/j.ces.2020.115563" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ces.2020.115563.10.1016/j.ces.2020.115563</a>
  22. 22. J. Sun, K. Han, C. Xie, et al., ‘Liquid-solid fluidized bed seawater ice desalination based on LNG cold energy’. Modern Chemical Industry, vol. 40, no. 7, 2020, doi: <a href="https://doi.org/10.16606/j.cnki.issn0253-4320.2020.07.042." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.16606/j.cnki.issn0253-4320.2020.07.042.</a>
  23. 23. I.M. Mujtaba, W. Cao, and C. Beggs, ‘Theoretical approach of freeze seawater desalination on flake ice maker utilizing LNG cold energy’, Desalination, vol. 355, 2015, doi: <a href="https://doi.org/10.1016/j.desal.2014.09.034.10.1016/j.desal.2014.09.034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.desal.2014.09.034.10.1016/j.desal.2014.09.034</a>
  24. 24. E.G. Cravalho, J.J. McGrath, and W.M. Toscano, ‘Thermodynamic analysis of the regasification of LNG for the desalination of sea water’, Cryogenics, vol. 17, no. 3, 1977, doi: <a href="https://doi.org/10.1016/0011-2275(77)90272-7.10.1016/0011-2275(77)90272-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0011-2275(77)90272-7.10.1016/0011-2275(77)90272-7</a>
  25. 25. T. He, R. Zheng, J. Zheng, Y. Ju, et al., ‘LNG cold energy utilisation: prospects and challenges’, Energy, vol. 170, 2019, doi: <a href="https://doi.org/10.1016/j.energy.2018.12.170.10.1016/j.energy.2018.12.170" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2018.12.170.10.1016/j.energy.2018.12.170</a>
  26. 26. N. Yamanouchi, and H. Nagasawa, ‘Using LNG cold for air separation’, Chemical Engineering Progress, vol. 75, no. 7, 1979.
  27. 27. Y. Wu, Y. Xiang, L. Cai, et al., ‘Optimization of a novel cryogenic air separation process based on cold energy recovery of LNG with exergoeconomic analysis’, Journal of Cleaner Production, vol. 275, 2020, doi: <a href="https://doi.org/10.1016/j.jclepro.2020.123027.10.1016/j.jclepro.2020.123027" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jclepro.2020.123027.10.1016/j.jclepro.2020.123027</a>
  28. 28. M. Mehrpooya, B. Golestani, and S. Mousavian, ‘Novel cryogenic argon recovery from the air separation unit integrated with LNG regasification and CO2 transcritical power cycle’, Sustainable Energy Technologies and Assessments, vol. 40, no. 3, 2020, doi: <a href="https://doi.org/10.1016/j.seta.2020.100767.10.1016/j.seta.2020.100767" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.seta.2020.100767.10.1016/j.seta.2020.100767</a>
  29. 29. R. Zhang, C. Wu, W. Song, et al., ‘Energy integration of LNG light hydrocarbon recovery and air separation: Process design and technic-economic analysis’, Energy, vol. 207, 2020, doi: <a href="https://doi.org/10.1016/j.energy.2020.118328.10.1016/j.energy.2020.118328" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2020.118328.10.1016/j.energy.2020.118328</a>
  30. 30. Z. Gu, ‘The simulation and operation optimization of the C_2∼+ recovery process from LNG’, Petrochemical Industry Application, vol. 37, no. 4, 2018.
  31. 31. T. Gao, W. Lin, and A. Gu, ‘Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilised’, Energy Conversion & Management, vol. 52, no. 6, 2011, doi: <a href="https://doi.org/10.1016/j.enconman.2010.12.040.10.1016/j.enconman.2010.12.040" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2010.12.040.10.1016/j.enconman.2010.12.040</a>
  32. 32. T. Yamamoto, T. Furuhata, N. Arai, and K. Mori, ‘Design and testing of the Organic Rankine Cycle’, Energy, vol. 26, no. 3, 2001.<a href="https://doi.org/10.1016/S0360-5442(00)00063-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0360-5442(00)00063-3</a>
  33. 33. N.B. Desai and S. Bandyopadhyay, ‘Process integration of organic Rankine cycle’, Energy, vol. 34, no. 10, 2009, doi: <a href="https://doi.org/10.1016/j.energy.2009.04.037.10.1016/j.energy.2009.04.037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2009.04.037.10.1016/j.energy.2009.04.037</a>
  34. 34. J. Koo, S.R. Oh, Y.U. Choi, et al., ‘Optimization of an Organic Rankine Cycle System for an LNG-Powered Ship’, Energies, doi: <a href="https://doi.org/10.3390/en12101933.10.3390/en12101933" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/en12101933.10.3390/en12101933</a>
  35. 35. Z. Tian, W. Zeng, B. Gu, et al., ‘Energy, exergy, and economic (3E) analysis of an organic Rankine cycle using zeotropic mixtures based on marine engine waste heat and LNG cold energy’, Energy Conversion and Management, vol. 228, 2020, doi: <a href="https://doi.org/10.1016/j.enconman.2020.113657.10.1016/j.enconman.2020.113657" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2020.113657.10.1016/j.enconman.2020.113657</a>
  36. 36. X. Sun, S. Yao, J. Xu, et al., ‘Design and Optimization of a Full-Generation System for Marine LNG Cold Energy Cascade Utilisation’, Journal of Thermal Science, vol. 29, no. 3, 2020, doi: <a href="https://doi.org/10.1007/s11630-019-1161-1.10.1007/s11630-019-1161-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11630-019-1161-1.10.1007/s11630-019-1161-1</a>
  37. 37. L. Xu, and G. Lin, ‘LNG-FSRU new LNG cold energy power generation optimization plan’, Natural gas chemical industry (C1 chemistry and chemical engineering), vol. 45, no. 5, 2020.
  38. 38. L. Zhao, J. Zhang, X. Wang, et al., ‘Dynamic exergy analysis of a novel LNG cold energy utilisation system combined with cold, heat and power’, Energy, vol. 212, 2020, doi: <a href="https://doi.org/10.1016/j.energy.2020.118649.10.1016/j.energy.2020.118649" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2020.118649.10.1016/j.energy.2020.118649</a>
  39. 39. I.A. Fernández, M.R. Gómez, J.R. Gómez, and L.M. López-González, ‘Generation of H2 on Board Lng Vessels for Consumption in the Propulsion System’, Polish Marit. Res., vol. 27, no. 1, 2020, doi: <a href="https://doi.org/10.2478/pomr-2020-0009.10.2478/pomr-2020-0009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-0009.10.2478/pomr-2020-0009</a>
DOI: https://doi.org/10.2478/pomr-2021-0053 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 107 - 121
Published on: Jan 1, 2022
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Yajing Li, Boyang Li, Fang Deng, Qianqian Yang, Baoshou Zhang, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.