Have a personal or library account? Click to login
Diagnostic Information Analysis of Quickly Changing Temperature of Exhaust Gas from Marine Diesel Engine Part I Single Factor Analysis Cover

Diagnostic Information Analysis of Quickly Changing Temperature of Exhaust Gas from Marine Diesel Engine Part I Single Factor Analysis

Open Access
|Jan 2022

References

  1. 1. Dahlström J., Experimental Investigations of Combustion Chamber Heat Transfer in a Light-Duty Diesel Engine. 2016. Lund University. Thesis for the degree of Doctor of Technology.
  2. 2. Debnath, B.K., Sahoo, N. and Saha, U. K., ‘Thermodynamic analysis of variable compression ratio diesel engine running with palm oil methyl ester’, Energy Conversion and Managment, vol. 65, pages 147-154. 2013. doi: <a href="https://doi.org/10.1016/j.enconman.2012.07.01610.1016/j.enconman.2012.07.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enconman.2012.07.01610.1016/j.enconman.2012.07.016</a>
  3. 3. Fennell D. A., Exhaust gas fuel reforming for improved gasoline direct injection engine efficiency and emissions. 2014. University of Birmingham. Ph.D.
  4. 4. Fuente S.S., Reducing shipping carbon emissions under real operative conditions: a study of alternative marine waste heat recovery systems based on the organic rankine cycle. 2016. Ph.D.
  5. 5. Jaremkiewicz M. and Taler, J., ‘Inverse determination of transient fluid temperature in pipelines’ Journal of Power Technologies, 96(6). p. 385-389. 2016.
  6. 6. Jaremkiewicz M., Odwrotne zagadnienia wymiany ciepła, występujące w pomiarach nieustalonej temperatury płynów. Rozprawa doktorska. Wydawnictwo Politechniki Krakowskiej. 2011. [‘Inverse heat transfer issues occurring in transient fluid temperature measurements’. PhD dissertation.]
  7. 7. Korczewski Z. and Puzdrowska P., ‘Analytical method of determining dynamic properties of thermocouples used in measurements of quick – changing temperatures of exhaust gases in marine diesel engines’ Combustion Engines, nr 162 (3), s. 300-306. 2015.
  8. 8. Korczewski Z. and Zacharewicz M., ‘Alternative diagnostic method applied on marine diesel engines having limited monitoring susceptibility’ Transactions of the Institute of Measurement and Control, 34 (8), p. 937-946. 2012. doi: <a href="https://doi.org/10.1177/014233121142617010.1177/0142331211426170" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/014233121142617010.1177/0142331211426170</a>
  9. 9. Korczewski, Z., Diagnostyka eksploatacyjna okrętowych silników spalinowych – tłokowych i turbinowych. Wybrane zagadnienia. Wydawnictwo Politechniki Gdańskiej. 2017. [‘Operational diagnostics of marine internal combustion engines - piston and turbine engines. Selected issues‘]
  10. 10. Korczewski. ‘Test Method for Determining the Chemical Emissions of a Marine Diesel Engine Exhaust in Operation’, Polish Maritime Research, vol. 28, no. 3, 2021, doi: <a href="https://doi.org/10.2478/pomr-2021-0035.10.2478/pomr-2021-0035" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2021-0035.10.2478/pomr-2021-0035</a>
  11. 11. Korzyński, M., Metodyka eksperymentu. Planowanie, realizacja i statystyczne opracowanie wyników eksperymentów technologicznych. WNT. 2017. [‘Experimental methodology. Planning, execution and statistical processing of results of technological experiments‘]
  12. 12. Kowalczyk M., Wybrane zagadnienia wymiany ciepła w silnikach wysokoprężnych - wymiana przez promieniowanie. Wydawnictwo Politechniki Poznańskiej. 2000. [‘Selected heat transfer issues in diesel engines - exchange by radiation‘]
  13. 13. Kudrewicz J., Analiza funkcjonalna dla automatyków i elektroników. PWN. 1976. [‘Functional analysis for automation and electronics engineers‘]
  14. 14. Linschoten P., Pressure and Temperature Measurements in a Heavy-Duty Diesel Engine. 2018. Master of Science Thesis
  15. 15. Llamas X., Modeling and control of EGR on marine two-stroke diesel engines (Vol. 1904). 2018. Linköping University Electronic Press. DOI: <a href="https://doi.org/10.3384/diss.diva-14459610.3384/diss.diva-144596" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3384/diss.diva-14459610.3384/diss.diva-144596</a>
  16. 16. Marszałkowski K. and Puzdrowska P., ‘A laboratory stand for the analysis of dynamic properties of thermocouples’ Journal of Polish CIMEEAC, vol. 10, nr 1 (2015), s. 111 – 120. 2015.
  17. 17. Mazur M., Jakościowa teoria informacji. WNT. Warszawa. 1970. [‘Qualitative information theory‘]
  18. 18. Mijas, Ł., Reiter, E. and Kukiełka, K., ‘Wykorzystanie systemu ANSYS Workbench do analizy statycznej korbowodów’ Autobusy: technika, eksploatacja, systemy transportowe. Instytut Naukowo-Wydawniczy ‘SPATIUM’ R. 14, nr 10 Str. 315-317. 2013. [‘Using ANSYS Workbench for static analysis of connecting rods’. Buses: technology, operations, transportation systems.]
  19. 19. Morey F.and Seers P., ‘Comparison of cycle-by-cycle variation of measured exhaust - gas temperature and in - cylinder pressure measurements’ Applied Thermal Engineering, nr 30, str. 487 - 491. 2010. DOI: <a href="https://doi.org/10.1016/j.applthermaleng.2009.10.01110.1016/j.applthermaleng.2009.10.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.applthermaleng.2009.10.01110.1016/j.applthermaleng.2009.10.011</a>
  20. 20. Olczyk A., ‘Koncepcja pomiaru szybkozmiennej temperatury gazu z uwzględnieniem dynamicznej składowej temperatury’ Pomiary Automatyka Kontrola, 53 Bis/9, s. 576-579. 2007. [‘A concept for the measurement of rapidly varying gas temperature taking into account the dynamic temperature component’ Measurements Automation Control]
  21. 21. Pfriem H., ‘Zur Messung veränderlicher Temperaturen von Gasen Und Flüssigkeiten’ Gen. Ingen., vol. 7, no. 2, pp. 85–92. 1936. [‘For measuring variable temperatures of gases and liquids‘]<a href="https://doi.org/10.1007/BF02592988" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF02592988</a>
  22. 22. Polanowski S., ‘Studium metod analizy wykresów indykatorowych w aspekcie diagnostyki silników okrętowych’ Zeszyty Naukowe AMW, Nr 69 A. 2007. [‘Study of Indicator Chart Analysis Methods in the Aspect of Marine Engine Diagnostics‘]
  23. 23. Polański Z., Planowanie doświadczeń w technice. PWN. 1984. [‘Planning experiments in technology‘]
  24. 24. Puzdrowska P., ‘Determining the time constant using two methods and defining the thermocouple response to sine excitation of gas temperature’ Journal of Polish CIMEEAC – vol. 11, nr 1, s. 157 – 167. 2016.
  25. 25. Puzdrowska P., ‘Signal filtering method of the fast-varying diesel exhaust gas temperature’ Combustion Engines, nr. 175(4), s.48-52. 2018. doi: <a href="https://doi.org/10.19206/CE-2018-40710.19206/CE-2018-407" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.19206/CE-2018-40710.19206/CE-2018-407</a>
  26. 26. Puzdrowska, P., ‘Application of the F-statistic of the Fisher-Snedecor distribution to analyze the significance of the effect of changes in the compression ratio of a diesel engine on the value of the specific enthalpy of the exhaust gas flow’ Combustion Engines, 186, 80-88. 2021. doi: <a href="https://doi.org/10.19206/CE-14134610.19206/CE-141346" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.19206/CE-14134610.19206/CE-141346</a>
  27. 27. Puzdrowska, P., ‘Evaluation of the significance of the effect of the active cross-sectional area of the inlet air channel on the specific enthalpy of the exhaust gas of a diesel engine using statistics F of the Fisher-Snedecor distribution’ Combustion Engines-Vol. 182, issue 3/2020, s.10-15. 2020. doi: <a href="https://doi.org/10.19206/CE-2020-30210.19206/CE-2020-302" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.19206/CE-2020-30210.19206/CE-2020-302</a>
  28. 28. Roberts S. J., Stone R., et. al., ‘Instantaneous Exhaust Temperature Measurement Using Thermocouple Compensation Techniques’, SAE Technical Papers. 2004. doi: <a href="https://doi.org/10.4271/2004-01-141810.4271/2004-01-1418" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/2004-01-141810.4271/2004-01-1418</a>
  29. 29. Rutkowski S., Wykorzystanie dynamicznych pomiarów temperatur spalin wylotowych w diagnostyce okrętowych silników spalinowych, Kopia maszynopisu streszczenia artykułu z 1976 roku. 1976. [‘The use of dynamic measurements of exhaust gas temperatures in the diagnosis of marine internal combustion engines’, Typescript copy of an abstract of a 1976 paper]
  30. 30. Shannon C. E., A mathematical theory of cryptography. A classified memorandum for Bell Telephone Labs. USA. 1945.
  31. 31. Tagawa M. and Ohta Y., Two – ‘Thermocouple Probe for Fluctuating Temperature Measurement in Combustion - Rational Estimation of Mean and Fluctuating Time Constants’ Combustion and Flame, nr 109, str. 540-560. 1997. doi: <a href="https://doi.org/10.1016/S0010-2180(97)00044-810.1016/S0010-2180(97)00044-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0010-2180(97)00044-810.1016/S0010-2180(97)00044-8</a>
  32. 32. Wang and L. Yao, ‘Effect of Engine Speeds and Dimethyl Ether on Methyl Decanoate HCCI Combustion and Emission Characteristics Based on Low-Speed Two-Stroke Diesel Engine’, Polish Maritime Research, vol. 27, no. 2, 2020, doi: <a href="https://doi.org/10.2478/pomr-2020-0030.10.2478/pomr-2020-0030" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-0030.10.2478/pomr-2020-0030</a>
  33. 33. Wisłocki K., Studium wykorzystania badań optycznych do analizy procesów wtrysku i spalania w silnikach o zapłonie samoczynnym, Rozprawa habilitacyjna, Rozprawy nr 387, Wydawnictwo Politechniki Poznańskiej, 2004. [‘A study of the use of optical testing for the analysis of injection and combustion processes in compression ignition engines’, Habilitation dissertation.]
  34. 34. Wiśniewski S., Termodynamika techniczna, WNT. 2005. [‘Technical thermodynamics‘]
  35. 35. Witkowski K., ‘The Increase of Operational Safety of Ships by Improving Diagnostic Methods for Marine Diesel Engine’ Transnav the International Journal on Marine Navigation and Safety of Sea Transportation, vol. 11, no 2. 2017. doi: <a href="https://doi.org/10.12716/1001.11.02.1510.12716/1001.11.02.15" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.12716/1001.11.02.1510.12716/1001.11.02.15</a>
  36. 36. Woś, P., Jaworski, A., Kuszewski, H., Lejda, K. and Ustrzycki, A., ‘Technical and operating problems yielded from setting up the optimum value of geometric compression ratio in piston engines’ Combustion Engines, Vol. 164, 1/2016, s. 3-14. 2016.<a href="https://doi.org/10.19206/CE-116483" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.19206/CE-116483</a>
  37. 37. Yang, Q. Tan, and P. Geng, ‘Combustion and Emissions Investigation on Low-Speed Two-Stroke Marine Diesel Engine with Low Sulfur Diesel Fuel’, Polish Maritime Research, vol. 26, no. 1, 2019, doi: <a href="https://doi.org/10.2478/pomr-2019-0017.10.2478/pomr-2019-0017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-0017.10.2478/pomr-2019-0017</a>
  38. 38. Zacharewicz M., Metoda diagnozowania przestrzeni roboczych silnika okrętowego na podstawie parametrów gazodynamicznych w kanale zasilającym turbosprężarkę. Rozprawa doktorska. AMW. 2010. [‘A method for diagnosing the working spaces of a marine engine on the basis of gasodynamic parameters in the turbocharger feed channel’, PhD dissertation]
  39. 39. Zhao et al., ‘A Numerical and Experimental Study of Marine Hydrogen-Natural Gas-Diesel Tri-Fuel Engines’, Polish Maritime Research, vol. 27, no. 4, 2020, doi: <a href="https://doi.org/10.2478/pomr-2020-0068.10.2478/pomr-2020-0068" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-0068.10.2478/pomr-2020-0068</a>
  40. 1. International Association of Classification Societies, Requirements Concerning Machinery Installations. ‘M35: Alarms, remote indications and safeguards for main reciprocating I.C. engines installed in unattended machinery spaces’. 2016.
  41. 2. International Association of Classification Societies, Requirements Concerning Machinery Installations. ‘M36: Alarms and safeguards for auxiliary reciprocating I. C. engines driving generators in unattended machinery spaces’. 2016.
  42. 3. International Association of Classification Societies, Requirements Concerning Machinery Installations. ‘M73: Turbochargers’. 2016
  43. 4. Polski Rejestr Statków, Przepisy. Publikacja nr 5/P. ‘Wymagania dla turbosprężarek. Rozdział 2. Wymagana dokumentacja’. 2016[‘Requirements for turbochargers. Chapter 2 - Required documentation‘]
  44. 5. Polski Rejestr Statków, Przepisy. Publikacja nr 28/P. ‘Próby silników spalinowych. Rozdział 1. Próba typu silników spalinowych. Rozdział 2. Próby zdawczo – odbiorcze silników spalinowych (szczególnie podrozdział 2.2.2)’. 2019. [‘Internal combustion engine tests. Chapter 1: Type tests for internal combustion engines. Chapter 2: Acceptance tests of internal combustion engines (especially subchapter 2.2.2)‘]
DOI: https://doi.org/10.2478/pomr-2021-0052 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 97 - 106
Published on: Jan 1, 2022
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Patrycja Puzdrowska, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.