Have a personal or library account? Click to login
Performance and Emission Modelling and Simulation of Marine Diesel Engines using Publicly Available Engine Data Cover

Performance and Emission Modelling and Simulation of Marine Diesel Engines using Publicly Available Engine Data

Open Access
|Jan 2022

References

  1. 1. Wang F., Pulsation Signals Analysis of Turbocharger Turbine Blades Based on Optimal EEMD And TEO, Polish Maritime Research 3 (103) 2019 Vol. 26; pp. 78-86 <a href="https://doi.org/10.2478/pomr-2019-0048." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-0048.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/pomr-2019-0048" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-0048</a></dgdoi:pub-id>
  2. 2. Ghaemi M. H., Zeraatgar H., Analysis of Hull, Propeller and Engine Interactions in Regular Waves by a Combination of Experiment and Simulation, Journal of Marine Science and Technology, 26, pages 257–272, 2021.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s00773-020-00734-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00773-020-00734-5</a></dgdoi:pub-id>
  3. 3. Gu X., Jiang G., Guo Z., Ding S., Design and Experiment of Low-Pressure Gas Supply System for Dual Fuel Engine, Polish Maritime Research 2 (106) 2020 Vol. 27; pp. 76-84 <a href="https://doi.org/10.2478/pomr-2020-0029." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-0029.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/pomr-2020-0029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-0029</a></dgdoi:pub-id>
  4. 4. Cepowski T., Regression Formulas for The Estimation of Engine Total Power for Tankers, Container Ships and Bulk Carriers on the Basis of Cargo Capacity and Design Speed, Polish Maritime Research, 1 (101) 2019 Vol. 26; pp. 82-94 <a href="https://doi.org/10.2478/pomr-2019-0010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-0010</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/pomr-2019-0010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-0010</a></dgdoi:pub-id>
  5. 5. Yang Z., Tan Q., Geng P., Combustion and Emissions Investigation on Low-Speed Two-Stroke Marine Diesel Engine with Low Sulfur Diesel Fuel, Polish Maritime Research, 1 (101) 2019 Vol. 26; pp. 153-161 <a href="https://doi.org/10.2478/pomr-2019-0017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-0017</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/pomr-2019-0017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-0017</a></dgdoi:pub-id>
  6. 6. Zeraatgar H., Ghaemi M. H., The Analysis of Overall Ship Fuel Consumption in Acceleration Manoeuvre using Hull-Propeller-Engine Interaction Principles and Governor Features, Polish Maritime Research 1 (101) 2019 Vol. 26; pp. 162-173 <a href="https://doi.org/10.2478/pomr-2019-0018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-0018</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/pomr-2019-0018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-0018</a></dgdoi:pub-id>
  7. 7. Gajek J., Marine Propulsion System Simulator of a CPP (Symulator Okrętowego Układu Napędowego ze Śrubą Nastawną – in Polish), Budownictwo Okrętowe, March 1975.
  8. 8. Andersen T.E., On Dynamics of Large Ship Diesel Engine, PhD Thesis, Technical University of Denmark, 1974.
  9. 9. Roszczyk S., et al, Static and Dynamic Characteristics of Marine Generating Sets (Statyczne i Dynamiczne Własności Okrętowych Zespołów Prądotwórczych – in Polish), Wydawnictwo Morskie, Gdansk, 1976.
  10. 10. Tittenbrun S., Kowalski Z., Łastowski W. F., Characteristics of Rotational Speed Regulators of Ship Diesel Engines under the Light of Testing on Simulation Stands (Własności Regulatorów Prędkości Obrotowej Okrętowych Wysokoprężnych Silników Spalinowych w Świetle Badań na Stanowiskach Symulacyjnych – in Polish), Budownictwo Okrętowe, Dec. 1979.
  11. 11. Kowalski Z., Simulation Study of Ship Propulsion Subsystems (Badanie Symulacyjne Podsystemów Napędowych Statków – in Polish), Zeszyt Naukowe Politechniki Gdańskiej (Elektryka), No. 49, Poland, 1980.
  12. 12. Krutov V. I., Automatic Control of Internal Combustion Engines, Mir Publishers, Russia, 1987.
  13. 13. Blanke M., Andersen J. S., On Dynamics of Large Two Stroke Diesel Engines: New Results from Identification, Proceedings of 9th IFAC World Conference, Budapest, Hungry, 1984.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S1474-6670(17)61272-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S1474-6670(17)61272-2</a></dgdoi:pub-id>
  14. 14. Lam W. C., Katagi T., Hashimoto T., Simulation of Transient Behaviour of Marine Medium Speed Diesel Engine, 3rd International Conf. of MCMC, Southampton, Sept. 1994.
  15. 15. Ferenc M., Numerical modeling of the Control Process of the Marine Diesel Engine with Consideration of Nonlinearity (Modelowanie Numeryczne Procesu Regulacji Okrętowego Silnika Wysokoprężnego z uwzględnieniem nieliniowości – in Polish), Zeszyty Naukowe Politechniki Śląskiej, No. 567, 1978.
  16. 16. Ferenc M., Osuch W., Stokloska H., A simplified Mathematical Model of the Dynamics of a Medium Speed Diesel Engine (Uproszczony Model Matematyczny Dynamiki Średnioobrotowego Silnika Wysokoprężnego – in Polish), Silniki Splalinowe 4/89, Poland, 1989.
  17. 17. Ferenc M., Wideł S., Fiutkowski M., Principles for Selecting the Dynamic Characteristics of the Rotary Speed Controller for a Medium-Speed Diesel Engine Driving a Generator (Zasady Doboru Charakterystyki Dynamicznej Regulatora Prędkości Obrotowej Średnioobrotowego Silnika Wysokoprężnego Napędzającego Prądnicę, Silniki Spalinowe – in Polish), No. 3’90. 1990.
  18. 18. Smith J. R., et al., Prediction of Dynamic Response of Marine System Incorporating Induction-Motor Propulsion Drives, Proc. IEE, Vol. 127, No. 5, Sept. 1980.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1049/ip-b.1980.0040" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1049/ip-b.1980.0040</a></dgdoi:pub-id>
  19. 19. Taylor S. K., et al., The Predetermination of the Dynamic Response of Marine Systems Powered by Parallel Connected Gas Turbine and Diesel Generators, CIMAC 1985, paper D56, Oslo, 1985.
  20. 20. Ford M. P., A Simplified Turbocharged Diesel Engine Model, Proceedings IMechE, Vol. 201, paper D4, 1987.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1243/PIME_PROC_1987_201_182_02" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1243/PIME_PROC_1987_201_182_02</a></dgdoi:pub-id>
  21. 21. Woodward J. B., Lattore R. G., Simulation of Diesel Engine Transient Behaviour in Marine Propulsion Analysis, Report MA-RD-940-83032, US Department of Transportation, Maritime Administration, 1983.
  22. 22. Woodward J. B., Lattore R. G., Modelling of Diesel Engine Transient Behaviour in Marine Propulsion Analysis, SNAME Transactions, Vol. 192, 1984.
  23. 23. Hendricks E., Chevalier A., Emerging Engine Control Technologies, Technical University of Denmark, 1985.
  24. 24. Hendricks E., Poulsen N. K., Minimum Energy Control of a Large Diesel Engine, SAE Technical Paper Series 861191, 1986.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4271/861191" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/861191</a></dgdoi:pub-id>
  25. 25. Hendricks E., The Analysis of Mean Value Engine Models, SAE Technical Paper Series 890563, 1989.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4271/890563" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/890563</a></dgdoi:pub-id>
  26. 26. Hendricks E., Mean Value Modelling of Large Turbocharged Two-Stroke Diesel Engines, SAE Technical Paper Series 890564, 1989.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4271/890564" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/890564</a></dgdoi:pub-id>
  27. 27. Jansen J. P., et al., Mean Value Modelling of a Small Turbocharged Diesel Engine, SAE Tech-nical Paper Series 910070, 1991.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4271/910070" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/910070</a></dgdoi:pub-id>
  28. 28. Woud J. K., Boot P., Riet B. J., A Diesel Engine Model for the Dynamic Simulation of Propulsion Systems, Schip en Werf de Zee, Vol. 3, pp. 4-13, Jan. 1993.
  29. 29. Próchnicki W., Model Matematyczny Układu Turbozespół Dowadowający - Silnik Spalinowe Przeznaczone do Badań Zmiennych Warunków Ruchu Zespołu Napędowego Statku, Praca Badawcza Nr. 86/93, Wydz. O. i O., Politechnika Gdanska, Gdansk, 1993.
  30. 30. Próchnicki W., Modified System of Cooperation Between Turbocharger and Diesel Engine in Transient States, 1st International Symposium on Automatic Control of Ship Propulsion and Ocean Engineering Systems, Gdansk, 1994.
  31. 31. Próchnicki W., Dzida M., Badania Wstępne Układu Turbozespół Doładowujący Silnik Spali-nowy w Zmiennych Warunkach Ruchu Zespołu Napędowego Statku, Praca badawcza No. 58/94, W. O. i O., Politechnika Gdańska, Poland, 1993.
  32. 32. Kafar J., Mathematical Model of Dynamic Behaviour of a Diesel Engine in Propulsion System, Polish Maritime Research, No. 2/94, Poland, 1994.
  33. 33. Lan W. C., Katagi T., Hashimoto T., Quasi Steady State Simulation of Diesel Engine Transient Performance and Design of Mechatronic Governor, Bulletin of MarEng Society of Japan, Vol. 24, No. 1, Feb. 1996.
  34. 34. Olsen D. R., Simulation of a Free-Piston Engine with Digital Computer, SAE Trans., Vol. 66, pp. 668-682, 1958.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4271/580267" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/580267</a></dgdoi:pub-id>
  35. 35. Cook H. A., Analysis and Interpretation of Turbo-charged Diesel Engine Performance, SAE Trans., Vol. 67, 1959.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4271/590203" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/590203</a></dgdoi:pub-id>
  36. 36. Whitehouse N. D., et al., Methods of Predicting Some Aspects of Performance of a Diesel Engine Using a Digital Computer, Proc. IMechE, Vol. 176, No. 9, 1962.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1243/PIME_PROC_1962_176_022_02" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1243/PIME_PROC_1962_176_022_02</a></dgdoi:pub-id>
  37. 37. Borman G. L., Mathematical Simulation of Internal Combustion Engine Processes, PhD Thesis, University of Wisconsin, 1964.
  38. 38. Streit E.E., Mathematical Simulation of Large Pulse-Turbocharged Two-Stroke Diesel Engine, PhD Thesis, University of Wisconsin, 1970.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4271/710176" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/710176</a></dgdoi:pub-id>
  39. 39. Streit E.E., Mathematical Simulation of Large Pulse-Turbocharged Two-Stroke Diesel Engine, PhD Thesis, University of Wisconsin, 1970.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4271/710176" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/710176</a></dgdoi:pub-id>
  40. 40. Marzouk M., Some Problems in Diesel Engine Research with Reference to Computer Control and Data Acquisition, Proc. IMechE, Vol. 190, No. 23/76, 1976.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1243/PIME_PROC_1976_190_018_02" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1243/PIME_PROC_1976_190_018_02</a></dgdoi:pub-id>
  41. 41. Benson S., The Thermodynamics and Gas Dynamics of Internal Combustion Engine, Vol. I, Oxford, Clarendon Press, 1982.
  42. 42. Woschni G., Anisits F., Experimental Investigation and Mathematical Presentation of Rate of Heat Release in Diesel Engine Dependent upon Engine Operating Conditions, SAE Technical Paper Series 740086, 1974.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4271/740086" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/740086</a></dgdoi:pub-id>
  43. 43. Woschni G., A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine, SAE Technical Paper Series 670931, 1967<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4271/670931" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/670931</a></dgdoi:pub-id>
  44. 44. Wiebe I., Halbempirische Formel für die Verbrennungsgeschwindigkeit, Velage de Akademic der Wissenschaften der VdSSR, Moscow, 1967.
  45. 45. Watson N., Marzouk M., A Non-Linear Digital Simulation of Turbocharged Diesel Engines under Transient Conditions, SAE Technical Paper Series 770123, 1977.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4271/770123" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/770123</a></dgdoi:pub-id>
  46. 46. Watson N., Janota M. S., Turbocharging the Internal Combustion Engine, MacMillan Publish-ers Ltd., London, 1982.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-1-349-04024-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-1-349-04024-7</a></dgdoi:pub-id>
  47. 47. Banisoleiman K., Bazari Z., Smith L. A., Mathieson N., Simulation of Diesel Engine Performance, Trans. IMarE, Vol. 105, pp. 117-135, 1993.
  48. 48. Larmi M. J., Transient Response Model of Low Speed Diesel Engine in Ice-Breaking Cargo Vessels, PhD Thesis, Helsinki University of Technology, Helsinki, 1993.
  49. 49. Ghaemi M. H.: Changing the Ship Propulsion System Performances Induced by Variation in Reaction Degree of Turbocharger Turbine, Journal of Polish CIMAC, Vol. 6., No.1 (2011), pages 55-70.
  50. 50. Benson R. S., Wave Action in the Exhaust System of a Supercharged Two-Stroke Engine Model, International Journal of Mechanical Science, Vol. 1, p. 253, 1959.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/0020-7403(60)90043-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0020-7403(60)90043-6</a></dgdoi:pub-id>
  51. 51. Benson R. S., et al., A Numerical Solution of Unsteady Flow Problems, International Journal of Mechanical Science, Vol. 6, pp. 117-144, 1964.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/0020-7403(64)90009-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0020-7403(64)90009-8</a></dgdoi:pub-id>
  52. 52. Benson R. S., Woods W. A., Woollat D., Unsteady Flow in Simple Branch Systems, Proc. IMechE, Vol. 178, Pt. 3I(iii), 1963/4.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1243/PIME_CONF_1963_178_223_02" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1243/PIME_CONF_1963_178_223_02</a></dgdoi:pub-id>
  53. 53. Blair G. P., Arbuckle J. A., Unsteady Flow in the Induction System of a Reciprocating Internal Combustion Engine, SAE 700443, 1970.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4271/700443" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/700443</a></dgdoi:pub-id>
  54. 54. Blair G. P., Goulburn J. R., The Pressure Time History in the Exhaust System of a High Speed Reciprocating Internal Combustion Engine, SAE 67077, 1967.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4271/670477" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/670477</a></dgdoi:pub-id>
  55. 55. Blair G. P., McConnel H. J., Unsteady Gas Flow Through High Specific Output Four-Stroke Cycle Engines, SAE 740736, 1974.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4271/740736" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/740736</a></dgdoi:pub-id>
  56. 56. Bazari Z., A DI Diesel Combustion and Emission Predictive Capability for Use in Cycle Simulation, SAE Technical Paper Series 920462, 1992.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4271/920462" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/920462</a></dgdoi:pub-id>
  57. 57. Sujesh G., Ramesh S., Modeling and control of diesel engines: A systematic review, Alexandria Engineering Journal, Vol. 57, Issue 4, pp. 4033-4048, 2018, ISSN 1110-0168, <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.aej.2018.02.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.aej.2018.02.011</a>">https://doi.org/10.1016/j.aej.2018.02.011</ext-link> (<ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.sciencedirect.com/science/article/pii/S1110016818301984">https://www.sciencedirect.com/science/article/pii/S1110016818301984</ext-link>)<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.aej.2018.02.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.aej.2018.02.011</a></dgdoi:pub-id>
  58. 58. Lee B., Jung D., Kim Y. W., Physics-Based Control Oriented Mean Value Model for Diesel Combustion Process with EGR Sensitivity, Proceedings of the ASME Dynamic Systems and Control Conference, 2011, pp. 1-8.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1115/DSCC2011-6089" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1115/DSCC2011-6089</a></dgdoi:pub-id>
  59. 59. Hendricks E., and Sorenson S., Mean Value SI Engine Model for Control Studies, American Control Conference, 1990, pp. 1882-1887.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.23919/ACC.1990.4791054" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.23919/ACC.1990.4791054</a></dgdoi:pub-id>
  60. 60. Sengupta S., De S., Bhattacharyya A. K., Mukhopadhyay S., Deb A. K., Fault Detection of Air Intake Systems of SI Gasoline Engines using Mean Value and Within Cycle Models, 5th Annual IEEE Conference on Automation Science and Engineering, Bangalore, 2009, pp. 361-366.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/COASE.2009.5234095" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/COASE.2009.5234095</a></dgdoi:pub-id>
  61. 61. Yacoub Y., Mean Value Modeling and Control of a Diesel Engine Using Neural Networks, Dr. of Mechanical Engineering Dissertation, West Virginia University, Morgantown, USA, 1999.
  62. 62. Theotokatos G. P., A Modeling Approach for the Overall Ship Propulsion Plant Simulation, 6th WSEAS International Conference on System Science and Simulation in Engineering, Venice, 2007, pp. 80-87.
  63. 63. Guzzella L., Onder C.H., Introduction to Modeling and Control of Internal Combustion Engine Systems, Springer, 2010.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-642-10775-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-10775-7</a></dgdoi:pub-id>
  64. 64. Yum K. K., Modeling and Simulation of Transient Performance and Emission of Diesel Engine, NTNU - Trondheim 2012, pp. 64-68.
  65. 65. Scappin F., Stefansson S. H., Haglind F., Andreasen A., Larsen U., Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines, Applied Thermal Engineering, Volume 37, May 2012, Pages 344-352 2012.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.applthermaleng.2011.11.047" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.applthermaleng.2011.11.047</a></dgdoi:pub-id>
  66. 66. Kharroubi K., Chen H., A Semi-Experimental Modeling Approach for a Large Two-Stroke Marine Diesel Engine Simulation, 27th CIMAC World Congress, Shanghai, China, May 13-16, 2013, Paper no. 105.
  67. 67. Baldi F., Theotokatos, G., Andersson K., Development of a combined mean value-zero dimensional model and application for a large marine four-stroke diesel engine simulation, <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.researchgate.net/publication/277338414_Development_of_a_combined_mean_value-zero_dimensional_model_and_application_for_a_large_marine_four-stroke_Diesel_engine_simulation">https://www.researchgate.net/publication/277338414_Development_of_a_combined_mean_value-zero_dimensional_model_and_application_for_a_large_marine_four-stroke_Diesel_engine_simulation</ext-link>
  68. 68. Altosole M., Campora U., Figari M., Laviola M., A Diesel Engine Modelling Approach for Ship Propulsion Real-Time Simulators, 2019, <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.mdpi.com/2077-1312/7/5/138/pdf">https://www.mdpi.com/2077-1312/7/5/138/pdf</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.3390/jmse7050138" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/jmse7050138</a></dgdoi:pub-id>
  69. 69. Zimmer K., Aufladung von Verbrennungsmotoren, 1985, ISBN: 978-3-540-15902-5, <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://citations.springernature.com/book?doi=10.1007/978-3-662-05913-5">https://citations.springernature.com/book?doi=10.1007/978-3-662-05913-5</ext-link>
  70. 70. Streuli A., Application of the BBC Power Turbine, BBC Brown Boveri, 1985.
  71. 71. Polish Norm PN-M-01521:1993, “Silniki spalinowe tłokowe – Terminologia”.
  72. 72. Chen S. K., Flynn P., Development of a Compression Ignition Research Engine, SAE 650733, 1965.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4271/650733" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/650733</a></dgdoi:pub-id>
  73. 73. Heywood J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, 1988.
  74. 74. MAN-B&amp;W Computerized Engine Application System (CEAS), <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.man-es.com/marine/products/planning-tools-and-downloads/ceas-engine-calculations">https://www.man-es.com/marine/products/planning-tools-and-downloads/ceas-engine-calculations</ext-link>.
  75. 75. MAN B&amp;W S65ME-C8.5-TII Project Guide Electronically Controlled Two-stroke Engines, online: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.academia.edu/35674638/MAN_B_and_W_S90ME_C8_TII_Project_Guide_Electronically_Controlled_Two_stroke_Engines">https://www.academia.edu/35674638/MAN_B_and_W_S90ME_C8_TII_Project_Guide_Electronically_Controlled_Two_stroke_Engines</ext-link>
  76. 76. TCA Turbocharger, The Benchmark, online: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://turbocharger.man-es.com/docs/default-source/shopwaredocuments/tca-turbochargerf451d068cde04720bdc9b8e95b7c0f8e.pdf?sfvrsn=81b197c6_3">https://turbocharger.man-es.com/docs/default-source/shopwaredocuments/tca-turbochargerf451d068cde04720bdc9b8e95b7c0f8e.pdf?sfvrsn=81b197c6_3</ext-link>, &amp; Project Guide TCA Turbocharger, online: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://turbocharger.man-es.com/docs/default-source/shopwaredocuments/tca.pdf?sfvrsn=98c91c09_2">https://turbocharger.man-es.com/docs/default-source/shopwaredocuments/tca.pdf?sfvrsn=98c91c09_2</ext-link>
DOI: https://doi.org/10.2478/pomr-2021-0050 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 63 - 87
Published on: Jan 1, 2022
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Mohammad Hossein Ghaemi, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.