Have a personal or library account? Click to login
The Influence of Selected Strain-Based Failure Criteria on Ship Structure Damage Resulting from a Collision with an Offshore Wind Turbine Monopile Cover

The Influence of Selected Strain-Based Failure Criteria on Ship Structure Damage Resulting from a Collision with an Offshore Wind Turbine Monopile

By:
Open Access
|Jan 2022

References

  1. 1. L. Ramirez, D. Fraile, and G. Brindley, “Offshore wind in Europe: Key trends and statistics 2019,” 2019.
  2. 2. L. Ramirez, D. Fraile, and G. Brindley, “Offshore wind in Europe: Key trends and statistics 2020,” 2021.
  3. 3. EMSA, “Marine Casualties and Incidents PRELIMINARY ANNUAL OVERVIEW OF MARINE CASUALTIES AND INCIDENTS 2014-2020,” no. April, 2021.
  4. 4. L. Junlai, X. Yonghe, W. Weiguo, and Z. Chi, “Analysis of the Dynamic Response of Offshore Floating Wind Power Platforms in Waves,” Polish Marit. Res., vol. 27, no. 4, pp. 17–25, 2020. doi: <a href="https://doi.org/10.2478/pomr-2020-006210.2478/pomr-2020-0062" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-006210.2478/pomr-2020-0062</a>
  5. 5. A. Karczewski and Ł. Piątek, “The influence of the cuboid float’s parameters on the stability of a floating building,” Polish Marit. Res., vol. 27, no. 107, pp. 16–21, 2020. doi: <a href="https://doi.org/10.2478/pomr-2020-004210.2478/pomr-2020-0042" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-004210.2478/pomr-2020-0042</a>
  6. 6. K. Niklas and A. Karczewski, “Determination of seakeeping performance for a case study vessel by the strip theory method,” Polish Marit. Res., vol. 27, no. 108, pp. 4–16, 2020. doi: <a href="https://doi.org/10.2478/pomr-2020-006110.2478/pomr-2020-0061" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-006110.2478/pomr-2020-0061</a>
  7. 7. F. Wang and N. Chen, “Dynamic response analysis of drill pipe considering horizontal movement of platform during installation of subsea production tree,” Polish Marit. Res., vol. 27, no. 3, pp. 22–30, 2020. doi: <a href="https://doi.org/10.2478/pomr-2020-004310.2478/pomr-2020-0043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-004310.2478/pomr-2020-0043</a>
  8. 8. J.T. Wu, J.H. Chen, C.Y. Hsin, and F.C. Chiu, “Dynamics of the FKT System with Different Mooring Lines,” Polish Marit. Res., vol. 26, no. 1, pp. 20–29, 2019. doi: <a href="https://doi.org/10.2478/pomr-2019-000310.2478/pomr-2019-0003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-000310.2478/pomr-2019-0003</a>
  9. 9. E. Mieloszyk, M. Abramski, and A. Milewska, “CFGFRPT Piles with a Circular Cross-Section and their Application in Offshore Structures,” Polish Marit. Res., vol. 26, no. 3, pp. 128–137, 2019. doi: <a href="https://doi.org/10.2478/pomr-2019-005310.2478/pomr-2019-0053" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-005310.2478/pomr-2019-0053</a>
  10. 10. W. Litwin, W. Leśniewski, D. Piątek, and K. Niklas, “Experimental Research on the Energy Efficiency of a Parallel Hybrid Drive for an Inland Ship,” Energies, vol. 12, no. 9, p. 1675, 2019.<a href="https://doi.org/10.3390/en12091675" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/en12091675</a>
  11. 11. V.S. Blintsov, K.S. Trunin, and W. Tarełko, “Determination of Additional Tension in Towed Streamer Cable Triggered by Collision with Underwater Moving Object,” Polish Marit. Res., vol. 27, no. 2, pp. 58–68, 2020. doi: <a href="https://doi.org/10.2478/pomr-2020-002710.2478/pomr-2020-0027" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2020-002710.2478/pomr-2020-0027</a>
  12. 12. K. Niklas and H. Pruszko, “Full scale CFD seakeeping simulations for case study ship redesigned from V-shaped bulbous bow to X-bow hull form,” Appl. Ocean Res., vol. 89, pp. 188–201, Aug. 2019.<a href="https://doi.org/10.1016/j.apor.2019.05.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.apor.2019.05.011</a>
  13. 13. F. Biehl, “Collision Safety Analysis of Offshore Wind Turbines,” 4th LSDYNA Eur. Conf., pp. 27–34, 2005.
  14. 14. K. Niklas, “Strength analysis of a large-size supporting structure for an offshore wind turbine,” Polish Marit. Res., vol. 24, pp. 156–165, 2017. doi: <a href="https://doi.org/10.1515/pomr-2017-003410.1515/pomr-2017-0034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/pomr-2017-003410.1515/pomr-2017-0034</a>
  15. 15. P. Dymarski, “Design of Jack-Up Platform for 6 MW Wind Turbine: Parametric Analysis Based Dimensioning of Platform Legs,” Polish Marit. Res., vol. 26, no. 2, pp. 183–197, 2019. doi: <a href="https://doi.org/10.2478/pomr-2019-003810.2478/pomr-2019-0038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-003810.2478/pomr-2019-0038</a>
  16. 16. B. Rozmarynowski, “Spectral Dynamic Analysis of A Stationary Jack-Up Platform,” Polish Marit. Res., vol. 26, no. 1, 2019. doi: <a href="https://doi.org/10.2478/pomr-2019-000510.2478/pomr-2019-0005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-000510.2478/pomr-2019-0005</a>
  17. 17. WindEurope, “Offshore wind in Europe - Key trends and statistics 2020,” WindEurope, vol. 3, no. 2, pp. 14–17, 2021.<a href="https://doi.org/10.1016/S1471-0846(02)80021-X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S1471-0846(02)80021-X</a>
  18. 18. N. Ren and J. Ou, “Dynamic numerical simulation for ship-OWT collision,” Proc. 2009 8th Int. Conf. Reliab. Maintainab. Safety, ICRMS 2009, no. July, pp. 1003–1007, 2009.
  19. 19. E. Homayoun, H. Ghassemi, and H. Ghafari, “Power Performance of the Combined Monopile Wind Turbine and Floating Buoy with Heave-Type Wave Energy Converter,” Polish Marit. Res., vol. 26, no. 3, pp. 107–114, 2019. doi: <a href="https://doi.org/10.2478/pomr-2019-005110.2478/pomr-2019-0051" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-005110.2478/pomr-2019-0051</a>
  20. 20. J.R.A. Tomporowski, A. Al-Zubiedy, J. Flizikowski, W. Kruszelnicka, P. Bałdowska-Witos, “Analysis of the Project of innovative floating turbine,” Polish Marit. Res., vol. 26, no. 4, pp. 121–183, 2020. doi: <a href="https://doi.org/10.2478/pomr-2019-007410.2478/pomr-2019-0074" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2019-007410.2478/pomr-2019-0074</a>
  21. 21. A. Bela, L. Buldgen, P. Rigo, and H. Le Sourne, “Numerical crashworthiness analysis of an offshore wind turbine monopile impacted by a ship,” Anal. Des. Mar. Struct. - Proc. 5th Int. Conf. Mar. Struct. MARSTRUCT 2015, no. 2013, pp. 661–669, 2015.
  22. 22. A. Bela, H. Le Sourne, L. Buldgen, and P. Rigo, “Ship collision analysis on offshore wind turbine monopile foundations,” Mar. Struct., vol. 51, pp. 220–241, 2017.<a href="https://doi.org/10.1016/j.marstruc.2016.10.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.marstruc.2016.10.009</a>
  23. 23. H. Jia, S. Qin, R. Wang, Y. Xue, D. Fu, and A. Wang, “Ship collision impact on the structural load of an offshore wind turbine,” Glob. Energy Interconnect., vol. 3, no. 1, pp. 43–50, 2020.<a href="https://doi.org/10.1016/j.gloei.2020.03.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.gloei.2020.03.009</a>
  24. 24. E. Lehmann and J. Peschmann, “Energy absorption by the steel structure of ships in the event of collisions,” Mar. Struct., vol. 15, no. 4–5, pp. 429–441, 2002.<a href="https://doi.org/10.1016/S0951-8339(02)00011-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0951-8339(02)00011-4</a>
  25. 25. K. Niklas and J. Kozak, “Experimental investigation of Steel-Concrete-Polymer composite barrier for the ship internal tank construction,” Ocean Eng., vol. 111, pp. 449–460, 2016.<a href="https://doi.org/10.1016/j.oceaneng.2015.11.030" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2015.11.030</a>
  26. 26. Ringsberg, J., Amdahl, J., Chen, B., Cho, S.-R., Ehlers, S., Hu, Z., Kubiczek, J., Kõrgesaar, M., Liu, B., Marinatos, J., Niklas, K., Parunov, J., Quinton, B., Rudan, S., Samuelides, M., Soares, C., Tabri, K., Villavicencio, R., Yamada, Y., Yu, Z., & Zhang, S., “MARSTRUCT benchmark study on nonlinear FE simulation of an experiment of an indenter impact with a ship side-shell structure,” Mar. Struct., vol. 59, pp. 142–157, 2018.<a href="https://doi.org/10.1016/j.marstruc.2018.01.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.marstruc.2018.01.010</a>
  27. 27. A. AbuBakar and R.S. Dow, “The impact analysis characteristics of a ship’s bow during collisions,” Eng. Fail. Anal., vol. 100, no. August 2018, pp. 492–511, 2019.<a href="https://doi.org/10.1016/j.engfailanal.2019.02.050" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.engfailanal.2019.02.050</a>
  28. 28. K. Niklas, “Numerical calculations of behaviour of ship double-bottom structure during grounding,” Polish Marit. Res., vol. 15, no. SUPPL. 1, 2008.<a href="https://doi.org/10.2478/v10012-007-0073-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10012-007-0073-2</a>
  29. 29. M.A.G. Calle and M. Alves, “A review-analysis on material failure modelling in ship collision,” Ocean Eng., vol. 106, pp. 20–38, 2015.<a href="https://doi.org/10.1016/j.oceaneng.2015.06.032" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2015.06.032</a>
  30. 30. O. Kitamura, “FEM approach to the simulation of collision and grounding damage,” Mar. Struct., vol. 15, no. 4–5, pp. 403–428, 2002.<a href="https://doi.org/10.1016/S0951-8339(02)00010-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0951-8339(02)00010-2</a>
  31. 31. DNVGL, “DNV-RP-C208: Determination of Structural Capacity by Non-linear FE analysis Methods,” 2019.
  32. 32. J.L. Martinez, J.C.R. Cyrino, and M.A. Vaz, “FPSO collision local damage and ultimate longitudinal bending strength analyses,” Lat. Am. J. Solids Struct., vol. 17, no. 2, pp. 1–19, 2020.<a href="https://doi.org/10.1590/1679-78255952" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1590/1679-78255952</a>
  33. 33. G. Wang, K. Arita, and D. Liu, “Behavior of a double hull in a variety of stranding or collision scenarios,” Mar. Struct., vol. 13, no. 3, pp. 147–187, 2000.<a href="https://doi.org/10.1016/S0951-8339(00)00036-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0951-8339(00)00036-8</a>
  34. 34. S. Yagi, H. Kumamoto, O. Muragishi, Y. Takaoka, and T. Shimoda, “A study on collision buffer characteristic of sharp entrance angle bow structure,” Mar. Struct., vol. 22, no. 1, pp. 12–23, 2009.<a href="https://doi.org/10.1016/j.marstruc.2008.06.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.marstruc.2008.06.006</a>
  35. 35. S. Ehlers, “The influence of the material relation on the accuracy of collision simulations,” Mar. Struct., vol. 23, no. 4, pp. 462–474, 2010.<a href="https://doi.org/10.1016/j.marstruc.2010.12.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.marstruc.2010.12.002</a>
  36. 36. S. Ehlers, J. Broekhuijsen, H.S. Alsos, F. Biehl, and K. Tabri, “Simulating the collision response of ship side structures: A failure criteria benchmark study,” Int. Shipbuild. Prog., vol. 55, no. 1–2, pp. 127–144, 2008.
  37. 37. Standards Norway, “NORSOK Standard - Design of steel structure N-004, Rev.3,” 2013.
  38. 38. DNVGL, “DNVGL-RP-C204 - Design against Accidental Loads,” 2017.
  39. 39. M. Scharrer, L. Zhang, and E.D. Egge, “Final report MTK0614, Collision calculations in naval design systems, Report Nr. ESS 2002.183,” Hamburg, 2002.
  40. 40. DNVGL, “DNV-RP-C208: Determination of Structural Capacity by Non-linear FE analysis Methods,” 2013.
  41. 41. S. Zhang, “The mechanics of ship collisions,” Technical University of Danemark, 1999.
  42. 42. Verband Deutscher Ingenieure, “Systematic calculation of high duty bolted joints joints with one cylindrical bolt,” Berlin, 2003.
  43. 43. O. Ozgur, “Numerical Assessment of FPSO Platform Behaviour in Ship Collision,” Trans. Marit. Sci., vol. 9, no. 2, 2020.<a href="https://doi.org/10.7225/toms.v09.n02.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.7225/toms.v09.n02.003</a>
  44. 44. T. S. Bøe, “Analysis and Design of Stiffened Columns in Offshore Floating Platforms Subjected to Supply Vessel Impacts,” Norwegian University of Science and Technology, 2018.
  45. 45. M.P. Mujeeb-Ahmed, S.T. Ince, and J.K. Paik, “Computational models for the structural crashworthiness analysis of a fixed-type offshore platform in collisions with an offshore supply vessel,” Thin-Walled Struct., vol. 154, no. June, p. 106868, 2020.
  46. 46. Livermore Software Technology, “LS-DYNA - KEYWORD USER’S MANUAL, VOLUME II Material Models,” 2020.
  47. 47. Y.G. Ko, S.J. Kim, J.M. Sohn, and J.K. Paik, “A practical method to determine the dynamic fracture strain for the nonlinear finite element analysis of structural crashworthiness in ship–ship collisions,” Ships Offshore Struct., vol. 13, no. 4, 2018.<a href="https://doi.org/10.1080/17445302.2017.1405584" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17445302.2017.1405584</a>
  48. 48. J. Travanca and H. Hao, “Energy dissipation in high-energy ship-offshore jacket platform collisions,” Mar. Struct., vol. 40, pp. 1–37, 2015.<a href="https://doi.org/10.1016/j.marstruc.2014.10.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.marstruc.2014.10.008</a>
DOI: https://doi.org/10.2478/pomr-2021-0048 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 42 - 52
Published on: Jan 1, 2022
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Karol Niklas, Alicja Bera, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.