Have a personal or library account? Click to login
Numerical Analysis of the Effect of Flexibility on the Propulsive Performance of a Heaving Hydrofoil Undergoing Sinusoidal and Non-Sinusoidal Motions Cover

Numerical Analysis of the Effect of Flexibility on the Propulsive Performance of a Heaving Hydrofoil Undergoing Sinusoidal and Non-Sinusoidal Motions

Open Access
|Jan 2022

References

  1. 1. Y. Chen, J. Nan, and J. Wu, “Wake effect on a semi-active flapping foil based energy harvester by a rotating foil,” Computers & Fluids, vol. 160, pp. 51–63, Jan. 2018.<a href="https://doi.org/10.1016/j.compfluid.2017.10.024" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.compfluid.2017.10.024</a>
  2. 2. S. Rashidi, M. Hayatdavoodi, and J. A. Esfahani, “Vortex shedding suppression and wake control: A review,” Ocean Engineering, vol. 126, pp. 57–80, Nov. 2016.<a href="https://doi.org/10.1016/j.oceaneng.2016.08.031" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2016.08.031</a>
  3. 3. E. Wang, Q. Xiao, Q. Zhu, and A. Incecik, “The effect of spacing on the vortex-induced vibrations of two tandem flexible cylinders,” Physics of Fluids, vol. 29, no. 7, art. no. 077103, Jul. 2017.
  4. 4. F. T. Muijres, P. Henningsson, M. Stuiver, and A. Hedenstrom, “Aerodynamic flight performance in flap-gliding birds and bats,” Journal of Theoretical Biology, vol. 306, pp. 120–128, Aug. 2012.<a href="https://doi.org/10.1016/j.jtbi.2012.04.01422726811" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jtbi.2012.04.01422726811</a>
  5. 5. J. Zhang and X.-Y. Lu, “Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight,” Physical Review E, vol. 80, no. 1, art. no. 017302, Jul. 2009.
  6. 6. Z. Cui, Z. Yang, L. Shen, and H. Z. Jiang, “Complex modal analysis of the movements of swimming fish propelled by body and/or caudal fin,” Wave Motion, vol. 78, pp. 83–97, Apr. 2018.<a href="https://doi.org/10.1016/j.wavemoti.2018.01.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.wavemoti.2018.01.001</a>
  7. 7. W. Shyy et al., “Recent progress in flapping wing aerodynamics and aeroelasticity,” Progress in Aerospace Sciences, vol. 46, no. 7, pp. 284–327, Oct. 2010.<a href="https://doi.org/10.1016/j.paerosci.2010.01.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.paerosci.2010.01.001</a>
  8. 8. M. S. Triantafyllou, G. S. Triantafyllou, and D. K. P. Yue, “Hydrodynamics of fishlike swimming,” Annual Review of Fluid Mechanics, vol. 32, no. 1, pp. 33–53, 2000.<a href="https://doi.org/10.1146/annurev.fluid.32.1.33" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1146/annurev.fluid.32.1.33</a>
  9. 9. G. S. Triantafyllou, M. S. Triantafyllou, M. A. Grosenbaugh, “Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion,” Journal of Fluids and Structures, vol. 7, no. 2, pp. 205–224, 1993.<a href="https://doi.org/10.1006/jfls.1993.1012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jfls.1993.1012</a>
  10. 10. J. A. Szantyr, R. Biernacki, P. Flaszynski, P. Dymarski, and M. Kraskowski, “An experimental and numerical study of the vortices generated by hydrofoils,” Polish Maritime Research, vol. 16, no. 3, pp. 11–17, 2009.<a href="https://doi.org/10.2478/v10012-008-0027-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10012-008-0027-3</a>
  11. 11. E. J. Chae, D. T. Akcabay, A. Lelong, J. A. Astolfi, and Y. L. Young, “Numerical and experimental investigation of natural flow-induced vibrations of flexible hydrofoils,” Physics of Fluids, vol. 28, no. 7, art. no. 075102, Jul. 2016.
  12. 12. J. M. Anderson, K. Streitlien, D. S. Barrett, and M. S. Triantafyllou, “Oscillating foils of high propulsive efficiency,” Journal of Fluid Mechanics, vol. 360, pp. 41–72, Apr. 1998.<a href="https://doi.org/10.1017/S0022112097008392" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/S0022112097008392</a>
  13. 13. Koochesfahani and M. Manoochehr, “Vortical patterns in the wake of an oscillating airfoil,” AIAA Journal, vol. 27, no. 9, pp. 1200–1205, 1989.
  14. 14. G. Pedro, A. Suleman, and N. Djilali, “A numerical study of the propulsive efficiency of a flapping hydrofoil,” International Journal for Numerical Methods in Fluids, vol. 42, no. 5, pp. 493–526, Jun. 2003.<a href="https://doi.org/10.1002/fld.525" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/fld.525</a>
  15. 15. P. Flaszynski, J. A. Szantyr, and K. Tesch, “Numerical prediction of steady and unsteady tip vortex cavitation on hydrofoils,” Polish Maritime Research, vol. 19, no. 3, pp. 3–15, 2012.<a href="https://doi.org/10.2478/v10012-012-0026-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10012-012-0026-2</a>
  16. 16. M. S. Triantafyllou, G. S. Triantafyllou, and R. J. Gopalkrishnan, “Wake mechanics for thrust generation in oscillating foils,” Physics of Fluids A: Fluid Dynamics, vol. 3, no. 12, pp. 2835–2837, 1991.
  17. 17. C. Eloy, “Optimal Strouhal number for swimming animals,” Journal of Fluids and Structures, vol. 30, no. 2, pp. 205–218, Apr. 2012.<a href="https://doi.org/10.1016/j.jfluidstructs.2012.02.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jfluidstructs.2012.02.008</a>
  18. 18. G. C. Lewin and H. Haj-Hariri, “Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow,” Journal of Fluid Mechanics, vol. 492, pp. 339–362, Oct. 2003.<a href="https://doi.org/10.1017/S0022112003005743" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/S0022112003005743</a>
  19. 19. Z. J. Wang, “Vortex shedding and frequency selection in flapping flight,” Journal of Fluid Mechanics, vol. 410, pp. 323–341, May. 2000.<a href="https://doi.org/10.1017/S0022112099008071" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/S0022112099008071</a>
  20. 20. R. Godoy-Diana, J.-L. Aider, and J. E. Wesfreid, “Transitions in the wake of a flapping foil,” Physical Review E, vol. 77, no. 1, art. no. 016308, Jan. 2008.
  21. 21. T. Schnipper, A. Andersen, and T. Bohr, “Vortex wakes of a flapping foil,” Journal of Fluid Mechanics, vol. 633, pp. 411–423, Aug. 2009.<a href="https://doi.org/10.1017/S0022112009007964" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/S0022112009007964</a>
  22. 22. A. Andersen, T. Bohr, T. Schnipper, and J. H. Walther, “Wake structure and thrust generation of a flapping foil in twodimensional flow,” Journal of Fluid Mechanics, vol. 812, art. no. R4, Feb. 2017.<a href="https://doi.org/10.1017/jfm.2016.808" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/jfm.2016.808</a>
  23. 23. D. Weihs, “Hydromechanics of fish schooling,” Nature, vol. 241, pp. 290-291, 1973.<a href="https://doi.org/10.1038/241290a0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/241290a0</a>
  24. 24. J. Zhang, S. Childress, A. Libchaber, and M. Shelley, “Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind,” Nature, vol. 408, no. 6814, pp. 835-839, Dec. 2000.
  25. 25. G. Xue et al., “Optimal design and numerical simulation on fish-like flexible hydrofoil propeller,” Polish Maritime Research, vol. 23, no. 4, pp. 59–66, Dec. 2016.<a href="https://doi.org/10.1515/pomr-2016-0070" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/pomr-2016-0070</a>
  26. 26. S. Heathcote and I. Gursul, “Flexible flapping airfoil propulsion at low Reynolds numbers,” AIAA Journal, vol. 45, no. 5, pp. 1066–1079, May 2007.
  27. 27. S. Alben, “Optimal flexibility of a flapping appendage in an inviscid fluid,” Journal of Fluid Mechanics, vol. 614, pp. 355–380, Nov. 2008.<a href="https://doi.org/10.1017/S0022112008003297" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/S0022112008003297</a>
  28. 28. S. Michelin and S. G. L. Smith, “Resonance and propulsion performance of a heaving flexible wing,” Physics of Fluids, vol. 21, no. 7, art. no. 071902, Jul. 2009.
  29. 29. Y. Zhang, C. Zhou, and H. Luo, “Effect of mass ratio on thrust production of an elastic panel pitching or heaving near resonance,” Journal of Fluids and Structures, vol. 74, pp. 385–400, Oct. 2017.<a href="https://doi.org/10.1016/j.jfluidstructs.2017.07.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jfluidstructs.2017.07.003</a>
  30. 30. S. Heathcote, Z. Wang, and I. Gursul, “Effect of spanwise flexibility on flapping wing propulsion,” Journal of Fluids and Structures, vol. 24, no. 2, pp. 183–199, Feb. 2008.<a href="https://doi.org/10.1016/j.jfluidstructs.2007.08.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jfluidstructs.2007.08.003</a>
  31. 31. D. A. Read, F. S. Hover, and M. S. Triantafyllou, “Forces on oscillating foils for propulsion and maneuvering,” Journal of Fluids and Structures, vol. 17, no. 1, pp. 163–183, Jan. 2003.<a href="https://doi.org/10.1016/S0889-9746(02)00115-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0889-9746(02)00115-9</a>
  32. 32. Q. Xiao and W. Liao, “Numerical investigation of angle of attack profile on propulsion performance of an oscillating foil,” Computers and Fluids, vol. 39, no. 8, pp. 1366–1380, Sep. 2010.
  33. 33. K. Lu, Y. H. Xie, and D. Zhang, “Numerical study of large amplitude, nonsinusoidal motion and camber effects on pitching airfoil propulsion,” Journal of Fluids and Structures, vol. 36, pp. 184–194, Jan. 2013.<a href="https://doi.org/10.1016/j.jfluidstructs.2012.10.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jfluidstructs.2012.10.004</a>
  34. 34. A. Boudis, A. C. Bayeul-Laine, A. Benzaoui, H. Oualli, O. Guerri, and O. Coutier-Delgosha, “Numerical investigation of the effects of nonsinusoidal motion trajectory on the propulsion mechanisms of a flapping airfoil,” Journal of Fluids Engineering, vol. 141, no. 4, art. no. 041106, Apr. 2019.
  35. 35. S. A. Manjunathan and R. Bhardwaj, “Thrust generation by pitching and heaving of an elastic plate at low Reynolds number,” Physics of Fluids, vol. 32, no. 7, Jul. 2020.<a href="https://doi.org/10.1063/5.0010873" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1063/5.0010873</a>
  36. 36. R. J. Wootton, “Support and deformability in insect wings,” Journal of Zoology, vol. 193, no. 4, pp. 447–468, 1981.<a href="https://doi.org/10.1111/j.1469-7998.1981.tb01497.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1469-7998.1981.tb01497.x</a>
  37. 37. J. Young and J. C. S. Lai, “Oscillation frequency and amplitude effects on the wake of a plunging airfoil,” AIAA Journal, vol. 42, no. 10, pp. 2042-2052, Oct. 2004.
  38. 38. S. Turek and J. Hron, Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow (Springer). Berlin: Springer, 2006.
  39. 39. G. K. Taylor, R. L. Nudds, and A. L. R. Thomas, “Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency,” Nature, vol. 425, no. 6959, pp. 707–711, Oct. 2003.
  40. 40. K. Isogai, Y. Shinmoto, and Y. Watanabe, “Effects of dynamic stall on propulsive efficiency and thrust of flapping airfoil,” AIAA Journal, vol. 37, no. 10, pp. 1145–1151, Oct. 1999.
  41. 41. I. H. Tuncer and M. Kaya, “Optimization of flapping airfoils for maximum thrust and propulsive efficiency,” AIAA Journal, vol. 43, no. 11, pp. 2329–2336, Nov. 2005.
DOI: https://doi.org/10.2478/pomr-2021-0045 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 4 - 19
Published on: Jan 1, 2022
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Fengkun Li, Pengyao Yu, Qiang Wang, Guangzhao Li, Xiangcheng Wu, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.