Have a personal or library account? Click to login
Experimental and Numerical Investigation on Specimen Geometry Effect on the CTOD Value For VL-E36 Shipbuilding Steel Cover

Experimental and Numerical Investigation on Specimen Geometry Effect on the CTOD Value For VL-E36 Shipbuilding Steel

By: Jakub Kowalski  
Open Access
|Oct 2021

References

  1. 1. K. Sun, Y. Hu, Y. Shi, and B. Liao, ‘Microstructure Evolution and Mechanical Properties of Underwater Dry Welded Metal of High Strength Steel Q690E Under Different Water Depths,’ Polish Marit. Res., vol. 27, no. 4, pp. 112–119, Dec. 2020, doi: 10.2478/pomr-2020-0071.10.2478/pomr-2020-0071
  2. 2. J. Kowalski, Ł. Licznerski, M. Supernak-Marczewska, and K. Emilianowicz, ‘Influence of Process of Straightening Ship Hull Structure Made of 316L Stainless Steel on Corrosion Resistance and Mechanical Properties,’ Polish Marit. Res., vol. 27, no. 4, pp. 103–111, Dec. 2020, doi: 10.2478/pomr-2020-0070.10.2478/pomr-2020-0070
  3. 3. X. Li, Z. Zhu, Y. Li, and Z. Hu, ‘Design and Mechanical Analysis of a Composite T-Type Connection Structure for Marine Structures,’ Polish Marit. Res., vol. 27, no. 2, pp. 145–157, Jun. 2020, doi: 10.2478/pomr-2020-0036.10.2478/pomr-2020-0036
  4. 4. K. Woloszyk, Y. Garbatov, J. Kowalski, and L. Samson, ‘Experimental and Numerical Investigations of Ultimate Strength of Imperfect Stiffened Plates of Different Slenderness,’ Polish Marit. Res., vol. 27, no. 4, pp. 120–129, Dec. 2020, doi: 10.2478/pomr-2020-0072.10.2478/pomr-2020-0072
  5. 5. Y. Zilin, W. Yu, Y. Xuefeng, G. Anping, Z. Rong, and J. Yanjie, ‘Investigations of Mechanical Properties of API P110 Steel Casing Tubes Operated in Deep-Sea Sour Condensate Well Conditions,’ Polish Marit. Res., vol. 27, no. 3, pp. 121–129, Sep. 2020, doi: 10.2478/pomr-2020-0053.10.2478/pomr-2020-0053
  6. 6. A. Neimitz, Mechanika Pękania. Warszawa: Wydawnictwo Naukowe PWN, 1998.
  7. 7. F. C. Campbell, Fatigue and Fracture: Understanding the Basics. 2012.10.31399/asm.tb.ffub.9781627083034
  8. 8. W. Dahl and P. Langenberg, ‘Fracture Toughness of Metallic Materials,’ in Encyclopaedia of Materials: Science and Technology (Second Edition), 2001, pp. 3336–3340.10.1016/B0-08-043152-6/00596-9
  9. 9. Polski Rejestr Statków, Rules For Classification and Construction on sea-going ships, Part IX, Materials and Welding. Gdańsk: PRS, 2021.
  10. 10. DNV, DNV OFFSHORE STANDARDS, DNV-OS-B101, Metallic materials. DNV AV, 2021.
  11. 11. ISO, ISO 12135:2016 Metallic materials — Unified method of test for the determination of quasistatic fracture toughness. Geneva, 2016.
  12. 12. ISO, Metallic materials - Method of test for the determination of quasistatic fracture toughness of welds (ISO 15653:2018). Geneva: ISO, 2018.
  13. 13. Standards Norway, NORSOK STANDARD M-101, Structural steel fabrication, 5th ed. Lysaker, 2011.
  14. 14. BSI, BS 7448-1:1991 - Fracture mechanics toughness tests. Method for determination of KIC, critical CTOD and critical J values of metallic materials. London: BSI, 1991.
  15. 15. Det Norske Veritas (DNV), ‘DNV-OS-C401 Fabrication and Testing of Offshore Structures,’ no. October, 2014.
  16. 16. The Engineering Equipment and Materials Users’ Association, Construction Specification for Fixed Offshore Structures in the North Sea, Publication No. 158 (19 9 4 Edition), Amendment No, 4, . EEMUA, 2005.
  17. 17. T. Meshii, K. Lu, and R. Takamura, ‘A failure criterion to explain the test specimen thickness effect on fracture toughness in the transition temperature region,’ Eng. Fract. Mech., vol. 104, pp. 184–197, 2013, doi: 10.1016/j. engfracmech.2013.03.025.
  18. 18. ASTM International, ‘ASTM E1820 - 18a Standard Test Method for Measurement of Fracture Toughness,’ 2018.
  19. 19. T. Kawabata, T. Tagawa, T. Sakimoto, Y. Kayamori, M. Ohata, Y. Yamashita, E. Tamura, H. Yoshinari, S. Aihara, F. Minami, H. Mimura, Y. Hagihara ‘Proposal for a new CTOD calculation formula,’ Eng. Fract. Mech., vol. 159, pp. 16–34, 2016, doi: 10.1016/j.engfracmech.2016.03.019.10.1016/j.engfracmech.2016.03.019
  20. 20. T. Kawabata T. Tagawa, Y. Kayamori, M. Ohata, Y Yamashita, M Kinefuchi, H. Yoshinari, S. Aihara, F. Minami, H, Mimura, Y. Hagihara, ‘Applicability of new CTOD calculation formula to various a0/W conditions and B × B configuration,’ Eng. Fract. Mech., vol. 179, pp. 375–390, 2017, doi: 10.1016/j.engfracmech.2017.03.027.10.1016/j.engfracmech.2017.03.027
  21. 21. [21] A. Wells, ‘Application of fracture mechanics at and beyond general yield, Report No. M13/63,’ Br. Weld. J., pp. 563–590, 1963.
  22. 22. J. Kowalski and J. Kozak, ‘The Effect of Notch Depth on CTOD Values in Fracture Tests of Structural Steel Elements,’ Polish Marit. Res., vol. 25, no. 2, pp. 85–91, 2018, doi: 10.2478/pomr-2018-0058.10.2478/pomr-2018-0058
  23. 23. ISO, ISO 6892-1:2016 Metallic materials — Tensile testing — Part 1: Method of test at room temperature. Geneva, 2016.
  24. 24. H. Hollomon, ‘Tensile deformation.’ Aime Trans, vol. 12, no. (4), pp. 1–22, 1945.
  25. 25. J. Kowalski and J. Kozak, ‘Numerical Model of Plastic Destruction of Thick Steel Structural Elements,’ Polish Marit. Res., vol. 25, no. 2, pp. 78–84, 2018, doi: 10.2478/ pomr-2018-0057.10.2478/pomr-2018-0057
  26. 26. Y. Bao and T. Wierzbicki, ‘A comparative study on various ductile crack formation criteria,’ J. Eng. Mater. Technol. Trans. ASME, vol. 126, no. 3, pp. 314–324, 2004, doi : 10.1115/1.1755244.10.1115/1.1755244
  27. 27. Dassault Systems, Abaqus 2019 Documentation. Providence: Dassault Systèmes,
DOI: https://doi.org/10.2478/pomr-2021-0038 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 110 - 116
Published on: Oct 22, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Jakub Kowalski, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.