Have a personal or library account? Click to login
Fluid–Structure Interaction Vibration Experiments and Numerical Verification of a Real Marine Propeller Cover

Fluid–Structure Interaction Vibration Experiments and Numerical Verification of a Real Marine Propeller

By: Benqiang Lou and  Hongyu Cui  
Open Access
|Oct 2021

References

  1. 1. J. Carlton, “Marine propellers and propulsion, 2nd ed.,” Butterworth-Heinemann, Oxford, 2012.10.1016/B978-0-08-097123-0.00010-1
  2. 2. P. Król, “Hydrodynamic State of Art Review: Rotor–Stator Marine Propulsor Systems Design,” Polish Marit. Res. 28 (1) (2021), 72–82. https://doi.org/10.2478/pomr-2021-000710.2478/pomr-2021-0007
  3. 3. L.C. Burrill, “Marine propeller blade vibrations: full scale tests,” Trans. NECIES, 1946, 62.
  4. 4. L.C. Burrill and W. Robson, “Virtual mass and moment of inertia of propellers,” Trans. NECIES, 1962, 78.
  5. 5. M.G. Parsons, W.S. Vorus, and E.M. Richard, “Added mass and damping of vibrating propellers,” Technical Report, University of Michigan, 1980.
  6. 6. S. Hyloarides and W. Van Gent, “Hydrodynamic reactions to propeller vibrations,” in: Schip en Werf, 1979, 46.
  7. 7. H. Shen, D. Zhao, and Z. Luo, “Solution to eigenvalues of fluid-solid coupling vibration problem,” J. Dalian Univ. Technol. 30 (3) (1990), 369–371. (In Chinese)
  8. 8. Z. Zheng, D. Zhao, and G. Wang, “Fluid-structure coupling kinetic analysis of propellers,” J. Dalian Univ. Technol., 36 (1996), 199–223. (In Chinese)
  9. 9. J. Xiong, D. Zhao, and J. Ma, “Dynamic analysis of propeller blades,” J. Dalian Univ. Technol. 40 (2000), 737–740. (In Chinese)
  10. 10. A. Korotkin, “Added masses of ship structures (Vol. 88),” Springer Science & Business Media, 2008.10.1007/978-1-4020-9432-3
  11. 11. H. Ghassemi and E. Yari, “The added mass coefficient computation of sphere, ellipsoid and marine propellers using boundary element method,” Polish Marit. Res. 18 (2011), 17–26. https://doi.org/10.2478/v10012-011-0003-110.2478/v10012-011-0003-1
  12. 12. P. Castellini and C. Santolini, “Vibration measurements on blades of a naval propeller rotating in water with tracking laser vibrometer,” Measurement 24 (1998), 43–54. https://doi.org/10.1016/S0263-2241(98)00044-X10.1016/S0263-2241(98)00044-X
  13. 13. [13] S.H. Abbas, J.K. Jang, D.H. Kim, and J.R. Lee, “Underwater vibration analysis method for rotating propeller blades using laser Doppler vibrometer,” Opt. Laser Eng. 132 (2020), 106133. https://doi.org/10.1016/j.optlaseng.2020.10613310.1016/j.optlaseng.2020.106133
  14. 14. L. Guangnian, Q. Chen, and Y. Liu, “Experimental study on dynamic structure of propeller tip vortex,” Polish Marit. Res. 27 (2) (2020), 11–18. https://doi.org/10.2478/pomr-2020-002210.2478/pomr-2020-0022
  15. 15. G. Vaz, D. Hally, T. Huuva, N. Bulten, P. Muller, P. Becchi, J.L. Herrer, S. Whitworth, R. Macé, and A. Korsström, “Cavitating flow calculations for the E779A propeller in open water and behind conditions: code comparison and solution validation,” in Proceedings of the Fourth International Symposium on Marine Propulsors (SMP) 15 (2015), 344–360.
  16. 16. H. Nouroozi and H. Zeraatgar, “Propeller hydrodynamic characteristics in oblique flow by unsteady RANSE solver,” Polish Marit. Res. 27 (1) (2020), 6–17. https://doi.org/10.2478/pomr-2020-000110.2478/pomr-2020-0001
  17. 17. A. Nadery and H. Ghassemi, “Numerical investigation of the hydrodynamic performance of the propeller behind the ship with and without Wed,” Polish Marit. Res. 27 (4) (2020), 50–59. https://doi.org/10.2478/pomr-2020-006510.2478/pomr-2020-0065
  18. 18. Y. Zhang, X.P. Wu, M.Y. Lai, G.P. Zhou, and J. Zhang, “Feasibility study of RANS in predicting propeller cavitation in behind-hull conditions,” Polish Marit. Res. 27 (4) (2020), 26–35. https://doi.org/10.2478/pomr-2020-006310.2478/pomr-2020-0063
  19. 19. J.F. Sigrist, “Fluid‒structure interaction: an introduction to finite element coupling,” John Wiley & Sons, West Sussex, United Kingdom, 2015.10.1002/9781118927762
  20. 20. Z. Suo and R. Guo, “Hydroelasticity of rotating bodies— theory and application,” Marine Struct. 9 (1996), 631–646. https://doi.org/10.1016/0951-8339(95)00010-010.1016/0951-8339(95)00010-0
  21. 21. H. Lin and J. Lin, “Nonlinear hydroelastic behavior of propellers using a finite element method and lifting surface theory,” J. Mar. Sci. Technol. 1 (1996), 114. https://doi.org/10.1007/BF0239116710.1007/BF02391167
  22. 22. D. Zou, J. Zhang, N. Ta, Z. Rao, “The hydroelastic analysis of marine propellers with consideration of the effect of the shaft,” Ocean Eng. 131 (2017), 95–106. https://doi.org/10.1016/j.oceaneng.2016.12.03210.1016/j.oceaneng.2016.12.032
  23. 23. J. Li, Y. Qu, H. Hua, “Hydroelastic analysis of underwater rotating elastic marine propellers by using a coupled BEMFEM algorithm,” Ocean Eng. 146 (2017), 178–191. https://doi.org/10.1016/j.ocean eng.2017.09.028
  24. 24. Y. Young, “Time-dependent hydroelastic analysis of cavitating propulsors,” J. Fluid. Struct. 23 (2007), 269–295. http://dx.doi.org/10.1016/j.jfluidstructs.2006.09.003.10.1016/j.jfluidstructs.2006.09.003
  25. 25. Y. Young, “Fluid-structure interaction analysis of flexible composite marine propellers,” J. Fluid. Struct. 24 (2008), 799–818. http://dx.doi.org/10.1016/j.jfluidstructs.2007.12.010.10.1016/j.jfluidstructs.2007.12.010
  26. 26. X. He, Y. Hong, and R. Wang, “Hydroelastic optimisation of a composite marine propeller in a non-uniform wake,” Ocean Eng. 39 (2012), 14–23, http://dx.doi.org/10.1016/j.oceaneng.2011.10.007.10.1016/j.oceaneng.2011.10.007
  27. 27. H. Lee, M.C. Song, J.C. Suh, B.J. Chang, “Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm,” Int. J. Nav. Archit. Ocean Eng. 6 (2014), 562–577. http://dx.doi.org/10.2478/IJNAOE-2013-0198.10.2478/IJNAOE-2013-0198
  28. 28. J. Neugebauer, M. Abdel-Maksoud, and M. Braun, “Fluid-structure interaction of propellers,” in IUTAM Symposium on Fluid‒Structure Interaction in Ocean Engineering 2008, (pp. 191‒204). Springer, Dordrecht.10.1007/978-1-4020-8630-4_17
  29. 29. S. Kapuria and H. Das, “Improving hydrodynamic efficiency of composite marine propellers in off-design conditions using shape memory alloy composite actuators,” Ocean Eng. 168 (2018), 185–203. https://doi.org/10.1016/j.oceaneng.2018.09.00110.1016/j.oceaneng.2018.09.001
  30. 30. D.M. MacPherson, V.R. Puleo, and M.B. Packard, “Estimation of entrained water added mass properties for vibration analysis,” SNAME New England Section, 2007.
  31. 31. J. Xing, “Natural vibration of two-dimensional slender structure–water interaction systems subject to Sommerfeld radiation condition,” J. Sound Vib. 308 (2007), 67–79. https://doi.org/10.1016/j.jsv.2007.07.00910.1016/j.jsv.2007.07.009
  32. 32. O.C. Zienkiewicz and R.L. Taylor, “The finite element method: solid mechanics,” Butterworth-Heinemann, Oxford, 2000.
  33. 33. X.C. Wang, “Finite element method,” Tsinghua University Press, 2002. (In Chinese)
  34. 34. E. Kock and L. Olson, “Fluid-structure interaction analysis by finite element method: a variational approach,” Int. J. Num. Mech. Eng. 31 (1991), 463–491. https://doi.org/10.1002/nme.162031030510.1002/nme.1620310305
DOI: https://doi.org/10.2478/pomr-2021-0034 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 61 - 75
Published on: Oct 22, 2021
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Benqiang Lou, Hongyu Cui, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.