Have a personal or library account? Click to login
Design Criteria for Scantling of Longitudinal and Transverse Connections in the Torsion Box Under Fatigue Loading Cover

Design Criteria for Scantling of Longitudinal and Transverse Connections in the Torsion Box Under Fatigue Loading

Open Access
|Jul 2021

References

  1. 1. W. Fricke, A. Von Lileienfeld-Toal, and H. Paetzoldt, “Fatigue strength investigations of welded details of stiffened plate structures in steel ships,” International Journal of Fatigue, vol. 34(1), pp. 17–26, 2012. doi: 10.1016/j.ijfatigue.2011.01.021.
  2. 2. J. Kuniala, “Fatigue Analysis of 3-Dimensional Ship Structural Detail,” Aalto University School of Engineering. Thesis for the degree of Master of Science in Technology, 2016.
  3. 3. W. Fricke, “Fatigue analysis of welded joints: state of development,” Marine Structures, vol. 16(3), pp. 185–200, 2003. doi: 10.1016/S0951-8339(02)00075-8.
  4. 4. W. Fricke, O. Doerk, and C. Weissenbord, “Comparison of different calculation methods for structural stresses at welded joints,” International Journal of Fatigue, vol. 25(5), pp. 359–369, 2003. doi: 10.1016/S0142-1123(02)00167-6.
  5. 5. W. Fricke and H. Paetzold, “Full-scale fatigue tests of ship structures to validate the S-N approaches for fatigue strength assessment,” Marine Structures, vol. 23(1), pp. 115–130, 2010. doi: 10.1016/j.marstruc.2010.01.004.
  6. 6. I. Lotsberg, “Fatigue design of plated structures using finite element analysis,” Ships and Offshore Structures, vol. 1(1), pp. 45–54, 2006. doi: 10.1533/saos.2005.0006.
  7. 7. W. Fricke, “Recent developments and future challenges in fatigue strength assessment of welded joints,” Proc Inst Mech Eng C J Mech Eng Sci., vol. 229(7), pp. 1224–1239, 2014. doi: 10.1177/0954406214550015.
  8. 8. K. Tran Nguyen, Y. Garbatov, and C. Guedes Soares, “Fatigue damage assessment of corroded oil tanker details based on global and local stress approaches,” International Journal of Fatigue, vol. 43, pp. 197–206, 2012. doi: 10.1016/j.ijfatigue.2012.04.004.
  9. 9. M. Aygül, “Fatigue Analysis of Welded Structures Using the Finite Element Method,” Thesis for the Degree of Licenciate of Engineering. Chalmers University of Technology, 2012.
  10. 10. I. Poutiainen, P. Tanskanen, and G. Marquis, “Finite element methods for structural hot spot stress determination - a comparison of procedures,” International Journal of Fatigue, vol. 26(11), pp. 1147–1157, 2004. doi: 10.1016/j.ijfatigue.2004.04.003.
  11. 11. Z. Wang, “Fatigue Behavior and Failure Assessment of Plate Connections in Ship Shaped Structures,” PhD thesis. National University of Singapore, 2008.
  12. 12. H. M. Westergaard, “Bearing Pressures and Cracks,” Journal of Applied mechanics, vol. 6, pp. A49–53, 1939.10.1115/1.4008919
  13. 13. G. R. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate,” Journal of Applied mechanics, vol. 24, pp. 361–364, 1957.10.1115/1.4011547
  14. 14. M. L. Williams, “On the Stress Distribution at the Base of a Stationary Crack,” Journal of Applied mechanics, vol. 24(1), pp. 109–114, 1956.10.1115/1.4011454
  15. 15. F. Erdogan and G. C. Sih, “On the crack extension in plates under plane loading and transverse shear,” Journal of basic Engineering, vol. 85(4), pp. 519–527, 1963. doi: 10.1115/1.3656897.
  16. 16. M. Hussain, S. Pu, and J. Underwood, “Strain energy release rate for a crack under combined mode I and mode II,” Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II (ASTM International), pp. 2–28, 1974. doi: 10.1520/STP33130S.
  17. 17. M. Chafi and A. Boulenouar, “A Numerical Modelling of Mixed Mode Crack Initiation and Growth in Functionally Graded Materials,” Materials Research, vol. 22(3), pp. e20180701, 2019. doi : 10.1590/1980-5373-mr-2018-0701
  18. 18. A. Carpinteri, “Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners,” Engineering Fracture Mechanics, vol. 26(1), pp. 143–155, 1987. doi: 10.1016/0013-7944(87)90086-5.
  19. 19. M. Strandberg, “Fracture at V-notches with contained plasticity,” Engineering Fracture Mechanics, vol. 69(3), pp. 403–415, 2002. doi: 10.1016/S0013-7944(01)00079-0.
  20. 20. J. D. Carroll, W. Abuzaid, J. Lambros, and H. Sehitoglu, “ High resolution digital image correlation measurements of strain accumulation in fatigue crack growth,” International Journal of Fatigue, vol. 57, pp. 140–150, 2013. https://doi.org/10.1016/j.ijfatigue.2012.06.010.10.1016/j.ijfatigue.2012.06.010
  21. 21. J. Blaber, B. Adair, and A. Antoniou, “NCorr: Open-Source 2D Digital Image Correlation Matlab Software,” Experimental Mechanics, vol. 55, pp. 1105–1122, 2015. doi: 10.1007/s11340-015-0009-1.
  22. 22. R. Branco, F. V. Antunes, J. A. Martins Ferreira, and J. M. Silva, “Determination of Paris law constants with a reverse engineering technique,” Engineering Failure Analysis, vol. 16, pp. 631–638, 2009. doi: 10.1016/j.engfailanal.2008.02.004.
  23. 23. I. Galic, I. Cular, V. Kresimir, and Z. Tonkovic, “Comparison of SIF solutions obtained by XFEM and conventional FEM or cracks in complex geometries like valve body,” Procedia Structural Integrity, vol. 13, pp. 2109–2113, 2018. doi: 10.1016/j.prostr.2018.12.200.
  24. 24. N. Möes, J. Dolbow, and T. Belytschko, “A finite element method for crack growth without remeshing,” International Journal for Numerical Methods in Engineering, vol. 46, pp. 131–150, 1999. doi: 10.1002/(sici)1097-0207(19990910)46:1%3c131::aidnme726%3e3.0.co;2-j.
  25. POLISH MARITIME RESEARCH, No 2/2021 126
  26. 25. F. Zhou, J. Molinari, and Y. Li, “Three-dimensional numerical simulations of dynamic fracture in silicon carbide reinforced aluminium,” Engineering Fracture Mechanics, vol. 71, pp. 1357–1378, 2004. doi: https://doi.org/10.1016/S0013-7944(03)00168-1.10.1016/S0013-7944(03)00168-1
  27. 26. A. O. Ayhan, “Three-dimensional fracture analysis using tetrahedral enriched elements and fully unstructured mesh,” International Journal of Solids and Structures, vol. 48, pp. 492–505, 2011. doi: https://doi.org/10.1016/j.ijsolstr.2010.10.012.10.1016/j.ijsolstr.2010.10.012
  28. 27. W. Huang, Y. Garbatov, and C. Guedes Soares, “Fatigue reliability assessment of a complex welded structure subjected to multiple cracks,” Engineering Structures, vol. 56, pp. 868–879, 2013. doi: https://doi.org/10.1016/j.engstruct.2013.06.01110.1016/j.engstruct.2013.06.011
  29. 28. T. Ulleland and M. Svensson, “Stress Concentration Factors in Side Shells Longitudinals Connected to Transverse Webframes,” Proceedings of the Eleventh International Offshore and Polar Engineering Conference, 2001.
  30. 29. M. S. Vidhya and K. V. M. Christina, “Fatigue Life, Fatigue Damage, Fatigue Factor of Safety, Fatigue Sensitivity, Biaxiality Indication and Equivalent Stress of a Radial Connecting Rod,” International Research Journal of Engineering and Technology, vol. 7(9), pp. 1499–1502, 2020.
  31. 30. H. R. Wasmi, M. Q. Abdullah, and O. A. Jassim, “Testing and Estimation Fatigue Life of a Flange Connection used in Power Plant by ANSYS,” International Journal of Current Engineering and Technology, vol. 6(4), pp. 1302–1306, 2006.
  32. 31. A. Bhanage and K. Padmanabhan, “Design for fatigue and simulation of glass fibre/epoxy composite automobile leaf spring,” ARPN Journal of Engineering and Applied Sciences, vol. 9(3), pp. 196, 2014.
  33. 32. P. C. Paris and F. Erdogan, “A critical analysis of crack propagation laws,” Journal of Basic Engineering, vol. 85 (4), pp. 528–534, 1963. doi: 10.1115/1.3656900.
  34. 33. N. Perez, Fracture Mechanics. Springer US, 2004.
  35. 34. M. Mlikota, S. Staib, S. Schmauder, and Z. Bozic, “Numerical determination of Paris law constants for carbon steel using a two-scale model,” Journal of Physics: Conference Series, vol. 843, pp. 012042, 2017. doi: 10.1088/1742-6596/843/1/012042.
DOI: https://doi.org/10.2478/pomr-2021-0028 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 116 - 127
Published on: Jul 15, 2021
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Arturo Silva-Campillo, Juan Carlos Suárez-Bermejo, Miguel Ángel Herreros-Sierra, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.