Have a personal or library account? Click to login
Review of Research Results Concerning the Modelling of Shipping Noise Cover

Review of Research Results Concerning the Modelling of Shipping Noise

Open Access
|Jul 2021

References

  1. 1. National Research Council: Ocean noise and marine mammals. National Academies Press (US), 2003.
  2. 2. Hermannsen, L., Beedholm, K., Tougaard, J., Madsen, P. T.: High frequency components of ship noise in shallow water with a discussion of implications for harbor porpoises (Phocoena phocoena), The Journal of the Acoustical Society of America, vol. 136(4), pp. 1640-1653, 2014.
  3. 3. McKenna, D.: Ship sources of ambient noise. IEEE Journal of Oceanic Engineering, 30(2), 257-261, 2005.10.1109/JOE.2005.850879
  4. 4. Chapman, N. R., Price, A.: Low frequency deep ocean ambient noise trend in the Northeast Pacific Ocean. The Journal of the Acoustical Society of America, 129(5), EL161-EL165, 2011.10.1121/1.3567084
  5. 5. Andrew, R. K., Howe, B. M., Mercer, J. A.: Long-time trends in ship traffic noise for four sites off the North American West Coast. The Journal of the Acoustical Society of America, 129(2), 642-651, 2011.10.1121/1.3518770
  6. 6. Zhu Beili, Huang Xiuchang.: Key Technologies for Submarine: Stealth Design of Acoustic Coating, Shanghai Jiao Tong University Press: Shanghai, China, 2012. (In Chinese)
  7. 7. Wenz, G. M.: Acoustic ambient noise in the ocean: Spectra and sources. The Journal of the Acoustical Society of America, 34(12), 1936-1956, 1962.10.1121/1.1909155
  8. 8. Lurton. X.: An Introduction to Underwater Acoustics. Berlin, Germany: Springer-Praxis, 2010.
  9. 9. Carey, W. M., Evans, R. B.: Ocean ambient noise: measurement and theory. Springer Science & Business Media, 2011.10.1007/978-1-4419-7832-5
  10. 10. Harrison, C. H.: Formulas for ambient noise level and coherence. The Journal of the Acoustical Society of America, 99(4), 2055-2066, 1996.10.1121/1.415392
  11. 11. Harrison, C. H.: CANARY: A simple model of ambient noise and coherence. Applied Acoustics, 51(3), 289-315, 1997.10.1016/S0003-682X(97)00004-2
  12. 12. Zilong Peng, Bin Wang, Jun Fan.: Assessment on source levels of merchant ships observed in the East China Sea. Ocean Engineering, 156: 179-190, 2018.10.1016/j.oceaneng.2018.02.035
  13. 13. Zilong Peng.: Measurement and modelling on the underwater noise radiated from ships in the area of Zhoushan Archipelago. Ph.D. Dissertation of Shanghai Jiao Tong University, 2018.
  14. 14. Urick, R. J.: Principles of Underwater Sound. McGraw-Hill Co, New York, 1983.
  15. 15. Ross, D.: Mechanics of Underwater Noise. Pergamon, New York, 1976.
  16. 16. Wales, S. C., Heitmeyer, R. M.: An ensemble source spectra model for merchant ship-radiated noise. The Journal of the Acoustical Society of America, 111(3), 1211-1231, 2002.10.1121/1.142735511931298
  17. 17. Breeding Jr, J. E., Pflug, L. A., Bradley, M., Walrod, M. H.: Research Ambient Noise DIrectionality (RANDI) 3.1 Physics Description (No. NRL/FR/7176--95-9628). Naval Research Lab Stennis Space Center MS, 1996.10.21236/ADA316034
  18. 18. Arveson, P. T., Vendittis, D. J.: Radiated noise characteristics of a modern cargo ship. The Journal of the Acoustical Society of America, 107(1), 118-129, 2000.10.1121/1.42834410641625
  19. 19. Veirs S, Veirs V, Wood J. D.: Ship noise extends to frequencies used for echolocation by endangered killer whales. PeerJ, 4: e1657, 2016.
  20. 20. Knudsen, V. O., Alford, R. S., Emling, J. W.: Underwater ambient noise. J. Mar. Res., 7, 410-429, 1948.
  21. 21. Piggott, C. L.: Ambient sea noise at low frequencies in shallow water of the Scotian Shelf. The Journal of the Acoustical Society of America, 36(11), 2152-2163, 1964.10.1121/1.1919337
  22. 22. Hamson, R. M., Wagstaff, R. A.: An ambient-noise model that includes coherent hydrophone summation for sonar system performance in shallow water (No. SACLANTCEN-SR-70). SACLANT ASW RESEARCH CENTRE LA SPEZIA (ITALY), 1983.
  23. 23. Wittekind, D. K.: A simple model for the underwater noise source level of ships. Journal of Ship production and design, 30(1), 7-14, 2014.10.5957/JSPD.30.1.120052
  24. 24. Audoly, C., Rizzuto, E.: AQUO: Achieve QUieter Oceans by shipping noise footprint reduction FP7-Collaborative project nº314227, WP 2: Noise Sources, Task T2.1, “Ship underwater radiated noise patterns”, URL: www.aquo.eu., 2018.
  25. 25. Traverso, F., Gaggero, T., Rizzuto, E., Trucco, A.: Spectral analysis of the underwater acoustic noise radiated by ships with controllable pitch propellers. In OCEANS 2015-Genova (pp. 1-6). IEEE, 2015.10.1109/OCEANS-Genova.2015.7271483
  26. 26. Traverso, F., Gaggero, T., Tani, G., Rizzuto, E., Trucco, A., Viviani, M.: Parametric analysis of ship noise spectra. IEEE Journal of Oceanic Engineering, 42(2), 424-438, 2016.10.1109/JOE.2016.2583798
  27. 27. Esperandieu, J. S.: Prediction of horizontal ambient shipping noise directionality with an analytical model: ANATRA, 1990.
  28. 28. Simard, Y., Roy, N., Gervaise, C., Giard, S.: Analysis and modelling of 255 source levels of merchant ships from an acoustic observatory along St. Lawrence Seaway. The Journal of the Acoustical Society of America, 140(3), 2002-2018, 2016.10.1121/1.496255727914442
  29. 29. Gaggero, T., Rizzuto, E., Traverso, F., Trucco, A.: Comparing ship underwater noise measured at sea with predictions by empirical models. In proc. of 21st International Congress on Sound and Vibration: 1510-1516, 2014.
  30. 30. Audoly, C., Gaggero, T., Baudin, E., Folegot, T., Rizzuto, E., Mullor, R. S., ... Kellett, P.: Mitigation of underwater radiated noise related to shipping and its impact on marine life: A practical approach developed in the scope of AQUO project. IEEE Journal of Oceanic Engineering, 42(2), 373-387, 2017.10.1109/JOE.2017.2673938
  31. 31. ANSI/ASA.: Quantities and Procedures for Description and Measurement of Underwater Sound from Ships–Part 1: General Requirements, 2009.
  32. 32. Veritas, D. N.: Rules for classification of ships – part 6 chapter 24: Silent Class Notation, 2010.
  33. 33. Mitson, R. B.: Underwater noise of research vessels: review and recommendations. ICES Cooperative Research Report No.209. ISSN 1017-6195, 1995.
  34. 34. ISO 17208-1.: Underwater acoustics -- Quantities and procedures for description and measurement of underwater sound from ships -- Part 1: Requirements for precision measurements in deep water used for comparison purposes, 2016.
  35. 35. Ainslie, M. A.: Principles of sonar performance modelling. Berlin: Springer, 2010.
  36. 36. De Jong, C. A. F.: Characterization of ships as sources of underwater noise. In NAG/DAGA International Conference on Acoustics, Rotterdamn, The Netherlands, 2009.
  37. 37. Coward, S.: A method for remote sensing of acoustic ship noise. Master’s thesis, 2013.
  38. 38. Brooker, A., Humphrey, V.: Measurement of radiated underwater noise from a small research vessel in shallow water. Ocean Engineering, 120, 182-189, 2016.10.1016/j.oceaneng.2015.09.048
  39. 39. Scrimger, P., Heitmeyer, R. M.: Acoustic source‐level measurements for a variety of merchant ships. The Journal of the Acoustical Society of America, 89(2), 691-699, 1991.10.1121/1.1894628
  40. 40. Grelowska, G.: Study of Seasonal Acoustic Properties of Sea Water in Selected Waters of the Southern Baltic, Polish Maritime Research, 23(1), 25-30, 2016.10.1515/pomr-2016-0004
  41. 41. McKenna, M. F., Ross, D., Wiggins, S. M., Hildebrand, J. A.: Underwater radiated noise from modern commercial ships. The Journal of the Acoustical Society of America, 131(1), 92-103, 2012.10.1121/1.3664100
  42. 42. Coward, S., Tollefsen, D., Dong, H.: Radiated ship noise level estimates from measurements in a fjord. The Journal of the Acoustical Society of America, 134(5), 4150-4150, 2013.10.1121/1.4831212
  43. 43. Das, A.: Shallow ambient noise variability due to distant shipping noise and tide. Applied Acoustics, 72(9), 660-664, 2011.10.1016/j.apacoust.2011.03.003
  44. 44. Roth, E. H., Schmidt, V., Hildebrand, J. A., Wiggins, S. M.: Underwater radiated noise levels of a research icebreaker in the central Arctic Ocean. The Journal of the Acoustical Society of America, 133(4), 1971-1980, 2013.10.1121/1.4790356
  45. 45. Bassett, C., Polagye, B., Holt, M., Thomson, J.: A vessel noise budget for Admiralty Inlet, Puget Sound, Washington (USA). The Journal of the Acoustical Society of America, 132(6), 3706-3719, 2012.10.1121/1.4763548
  46. 46. Trevorrow, M. V., Vasiliev, B., Vagle, S.: Directionality and maneuvering effects on a surface ship underwater acoustic signature. The Journal of the Acoustical Society of America, 124(2), 767-778, 2008.10.1121/1.2939128
  47. 47. Gaggero, T., Bassetti, M., Firenze, E., Tesei, A., Trucco, A.: Processing strategies for evaluating the ship radiated noise using an underwater vertical array. In proc. of 2nd Int. Conf. and Exhibition on Underwater Acoustics, 329-336, 2014.
  48. 48. Grelowska, G., Kozaczka, E., Kozaczka, S., Szymczak, W.: Underwater noise generated by a small ship in the shallow sea. Archives of Acoustics, 38(3): 351-356, 2013.
  49. 49. Zilong Peng, Jun Fan, Bin Wang.: Analysis and Modelling on Radiated Noise of a Typical Fishing Boat Measured in Shallow Water Inspired by AQUO Project’s Model. Archives of Acoustics, 38(3): 351-356, 2018.
  50. 50. SILENV.: Ships oriented Innovative Solutions to Reduce Noise and Vibrations, FP7-EC Collaborative Research Project, 2009-2012.
  51. 51. Rizzuto, E., Audoly, C.: AQUO: Achieve QUieter Oceans by shipping noise footprint reduction FP7-Collaborative project nº314227, WP 2: Noise Sources, Task T2.2, “Predictive theoretical models for propeller”, URL: www.aquo.eu, 2015.
  52. 52. Hallander, J., Audoly, C.: AQUO: Achieve QUieter Oceans by shipping noise footprint reduction FP7-Collaborative project nº314227, WP 2: Noise Sources, Task T2.3, “Propeller noise experiments in model scale”, URL: www.aquo.eu, 2015.
  53. 53. Salinas, R., Audoly, C.: AQUO: Achieve QUieter Oceans by shipping noise footprint reduction FP7-Collaborative project nº314227, WP 2: Noise Sources, Task T2.5, “Synthesis: Impact of propeller noise on global”, URL: www.aquo.eu, 2015.
  54. 54. Moreno, A., Audoly, C.: AQUO: Achieve QUieter Oceans by shipping noise footprint reduction FP7-Collaborative project nº314227, WP 2: Noise Sources, Task T3.1, “European URN Standard Measurement Method”, URL: www.aquo.eu, 2015.
  55. 55. Salinas, R., Audoly, C.: AQUO: Achieve QUieter Oceans by shipping noise footprint reduction FP7-Collaborative project nº314227, WP 2: Noise Sources, Task T3.2, “On-site measurements-Experimental data for accurate identification and quantification of Cavitation Noise and other sources”, URL: www.aquo.eu, 2015.
  56. 56. Andre, M., Audoly, C.: AQUO: Achieve QUieter Oceans by shipping noise footprint reduction FP7-Collaborative project nº314227, WP 2: Noise Sources, Task T3.4, “In-situ measurements of ambient underwater noise along time in different areas with record of AIS data”, URL: www.aquo.eu, 2015.
  57. 57. Brooker, A., Humphrey, V., Jansen, E.: Suppression of underwater Noise Induced by Cavitation, FP7-314394-SONIC, Deliverable D2.5: Full Scale Radiated Noise Measurement, 2015.
  58. 58. Loughborough University Institutional Repository.: Measurement of underwater noise arising from marine aggregate dredging operations. Marine Aggregate Levy Sustainability Fund (MALSF), 2011.
  59. 59. Wright, E. B., Cybulski, J.: Low-frequency acoustic source levels of large merchant ships (No. NRL-8677). NAVAL RESEARCH LAB WASHINGTON DC, 1983.10.21236/ADA126292
  60. 60. Hamson, R. M.: The modelling of ambient noise due to shipping and wind sources in complex environments. Applied Acoustics, 51(3), 251-287, 1997.10.1016/S0003-682X(97)00003-0
  61. 61. Etter, P. C.: Underwater Acoustics Modelling and Simulation: Principle, Techniques and application. Spon Press, New York, 2003.10.1201/9781482295146
  62. 62. Anon.: Ocean noise and marine mammals (National Research Council of the National Academies). The National Academies Press, Washington, D.C, 2003.
  63. 63. Hom, F. L. C., Kinda, F. G. B., Hom, S.: Statistical Ambient Noise Maps from Traffic at World and Basin Scales. Institute Of Acoustics, Cambridge, UK, 2016.
  64. 64. Colin, M. E., Ainslie, M. A., Binnerts, B., de Jong, C. A., Karasalo, I., Östberg, M., ... Clorennec, D.: Definition and results of test cases for shipping sound maps. IEEE, 2015.10.1109/OCEANS-Genova.2015.7271461
  65. 65. Audoly, C., Flikeema, M.: Suppression of underwater Noise Induced by Cavitation, FP7-314394-SONIC, Deliverable D5.4: Guidelines for regulation on UW noise from commercial shipping, 2015.
  66. 66. Aulanier, F., Simard, Y., Roy, N., Bandet, M., Gervaise, C.: Groundtruthed probabilistic shipping noise modelling and mapping: Application to blue whale habitat in the Gulf of St. Lawrence. In Proceedings of Meetings on Acoustics 4ENAL (Vol. 27, No. 1, p. 070006). ASA, 2016.
  67. 67. Jones, E. L., Hastie, G. D., Smout, S., Onoufriou, J., Merchant, N. D., Brookes, K. L., Thompson, D.: Seals and shipping: quantifying population risk and individual exposure to vessel noise. Journal of applied ecology, 54(6), 1930-1940, 2017.10.1111/1365-2664.12911
  68. 68. Folegot, T., Clorennec, D., Brunet, P., Six, L., Chavanne, R., van der Schaar, M., André, M.: Monitoring long term ocean noise in European waters. In OCEANS 2015-Genova:1-7, 2015.
  69. 69. Soares, C., Zabel, F., Jesus, S. M.: A shipping noise prediction tool. In OCEANS 2015-Genova:1-7, 2015.
  70. 70. Erbe, C., MacGillivray, A., Williams, R.: Mapping cumulative noise from shipping to inform marine spatial planning. The Journal of the Acoustical Society of America, 132(5), EL423-EL428, 2012.10.1121/1.475877923145705
  71. 71. Sertlek, H. Ö., Binnerts, B., Ainslie, M. A.: The effect of sound speed profile on shallow water shipping sound maps. The Journal of the Acoustical Society of America, 140(1), EL84-EL88, 2016.10.1121/1.495471227475218
  72. 72. Buszman K., Gloza M.: Detection of Floating Objects Based on Hydroacoustic and Hydrodynamic Pressure Measurements in the Coastal Zone, Polish Maritime Research, 27(2), 168-175, 2020.10.2478/pomr-2020-0038
  73. 73. Buszman K.: Analysing the Impact on Underwater Noise of Changes to the Parameters of a Ship’s Machinery, Polish Maritime Research, 27(3), 176-181, 2020.10.2478/pomr-2020-0059
  74. 74. Kozaczka, E., Grelowska, G.: Propagation of Ship-Generated Noise in Shallow Sea, Polish Maritime Research, 25(2), 37-46, 2018.10.2478/pomr-2018-0052
  75. 75. Kozaczka, E., & Grelowska, G.: Autonomous Platform to Protect Maritime Infrastructure Facilities, Polish Maritime Research, 26(4), 101-108, 2019.10.2478/pomr-2019-0071
  76. 76. Gaggero, T., Rizzuto, E., Traverso, F., Trucco, A.: Comparing ship underwater noise measured at sea with predictions by empirical models. In proc. of 21st International Congress on Sound and Vibration: 1510-1516, 2014.
DOI: https://doi.org/10.2478/pomr-2021-0027 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 102 - 115
Published on: Jul 15, 2021
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Xiaowei Yan, Hao Song, Zilong Peng, Huimin Kong, Yipeng Cheng, Linjiang Han, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.