Have a personal or library account? Click to login
Investigations of the Emission Characteristics of a Dual-Fuel Gas Turbine Combustion Chamber Operating Simultaneously on Liquid and Gaseous Fuels Cover

Investigations of the Emission Characteristics of a Dual-Fuel Gas Turbine Combustion Chamber Operating Simultaneously on Liquid and Gaseous Fuels

Open Access
|Jul 2021

References

  1. 1. A. Duggal and J. Minnebo, ‘The Floating Production, Storage and Offloading system – past, present and future’, in Offshore Technology Conference, Houston, Texas, USA, May 05, 2020, 2020, doi.org/10.4043/30514-MS.
  2. 2. M. M. L. Reis and W. L. R. Gallo, ‘Study of waste heat recovery potential and optimization of the power production by an organic Rankine cycle in an FPSO unit’, Energy Convers. Manag., vol. 157, pp. 409–422, 2018, doi.org/10.1016/j.enconman.2017.12.015.
  3. 3. O. Cherednichenko, S. Serbin, and M. Dzida, ‘Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units’, Pol. Marit. Res., vol. 26, no. 3, pp. 181–187, 2019, doi.org/10.2478/pomr-2019-0059.
  4. 4. M. Aligoodarz, M. Soleimanitehrani, H. Karrabi, and F. Ehsaniderakhshan, ‘Numerical simulation of SGT-600 gas turbine combustor, flow characteristics analysis, and sensitivity measurement with respect to the main fuel holes diameter’, Proc. Inst. Mech. Eng. G J. Aerosp. Eng., vol. 230, no. 13, pp. 2379–2391, 2016, doi.org/10.1177/0954410015625663.
  5. 5. O. Cherednichenko, S. Serbin, and M. Dzida, ‘Investigation of the combustion processes in the gas turbine module of an FPSO operating on associated gas conversion products’, Pol. Marit. Res., vol. 26, no. 4, pp. 149–156, 2019, http://doi.org/10.2478/pomr-2019-0077, doi.org/10.2478/pomr-2019-0077.
  6. 6. J. A. Vidoza, J. G. Andreasen, F. Haglind, M. M. L. dos Reis, and W. Gallo, ‘Design and optimization of power hubs for Brazilian off-shore oil production units’, Energy (Oxf.), vol. 176, pp. 656–666, 2019.10.1016/j.energy.2019.04.022
  7. 7. C. Waldhelm, ‘Application of gas turbines on floater vessel for power generation service’, in ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, Volume 2: Aircraft Engine; Marine; Microturbines and Small Turbomachinery, 1998.10.1115/98-GT-277
  8. 8. S. Serbin, B. Diasamidze, and M. Dzida, ‘Investigations of the working process in a dual-fuel low-emission combustion chamber for an FPSO gas turbine engine’, Pol. Marit. Res., vol. 27, no. 3, pp. 89–99, 2020.10.2478/pomr-2020-0050
  9. 9. Directive 2013/39/EU of the European Parliament and of the Council, Europa.eu, 2008. [Online]. Available: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:EN:PDF. [Accessed: 05 Mar 2021].
  10. 10. S. Di Iorio, A. Magno, E. Mancaruso, and B. M. Vaglieco, ‘Analysis of the effects of diesel/methane dual fuel combustion on nitrogen oxides and particle formation through optical investigation in a real engine’, Fuel Process. Technol., vol. 159, pp. 200–210, 2017.10.1016/j.fuproc.2017.01.009
  11. 11. S. I. Serbin, ‘Modeling and experimental study of operation process in a gas turbine combustor with a plasma-chemical element’, Combust. Sci. Technol., vol. 139, no. 1, pp. 137–158, 1998.10.1080/00102209808952084
  12. 12. B. T. Diasamidze, S. V. Vilkul, and S. I. Serbin, ‘Theoretical investigations of a dual-fuel low-emission gas turbine combustor’, NTU KhPI Bull. Power Heat Eng. Process. Equip., no. 1, pp. 27–33, 2020.10.20998/2078-774X.2019.01.04
  13. 13. C. K. Law, Combustion Physics. Cambridge, England: Cambridge University Press, 2010.
  14. 14. J. Warnatz, U. Maas, and R. W. Dibble, Combustion: Physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, 3rd ed. Berlin, Germany: Springer, 2013.
  15. 15. B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence. London: Academic Press.
  16. 16. S. I. Serbin, I. B. Matveev, and G. B. Mostipanenko, ‘Investigations of the working process in a ‘lean-burn’ gas turbine combustor with plasma assistance’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 39, no. 12, pp. 3331–3335, 2011.
  17. 17. D. Choudhury, Introduction to the Renormalization Group Method and Turbulence Modeling. Fluent Incorporated, 1973.
  18. 18. B. Magnussen, ‘On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow’, in 19th Aerospace Sciences Meeting, St Louis, MO, USA,1981.10.2514/6.1981-42
  19. 19. S. B. Pope, ‘Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation’, Combust. Theory Model., vol. 1, no. 1, pp. 41–63, 1997.10.1080/713665229
  20. 20. F. Wang, Y. Huang, and T. Deng, ‘Gas turbine combustor simulation with various turbulent combustion models’, in ASME Turbo Expo 2009: Power for Land, Sea, and Air, June 8–12, 2009, Orlando, Florida, USA, Volume 2: Combustion, Fuels and Emissions, 2009.10.1115/GT2009-59198
  21. 21. A. C. Benim, S. Iqbal, W. Meier, F. Joos, and A. Wiedermann, ‘Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor’, Appl. Therm. Eng., vol. 110, pp. 202–212, 2017.10.1016/j.applthermaleng.2016.08.143
  22. 22. Turbulence, heat and mass transfer: Proceedings of the Seventh International Symposium on Turbulence, Heat and Mass Transfer, ed. by K. Hanjalic, Palermo, Italy, 24-27 September, 2012.
  23. 23. I. V. Novosselov and P. C. Malte, ‘Development and application of an eight-step global mechanism for CFD and CRN simulations of lean-premixed combustors’, J. Eng. Gas Turbines Power, vol. 130, no. 2, 2008.10.1115/1.2795787
  24. 24. I. Matveev, S. Matveeva, S. Serbin, ‘Design and Preliminary Test Results of the Plasma Assisted Tornado Combustor’, Collection of Technical Papers - 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, AIAA 2007-5628, vol. 6, 2007, pp. 6091-6098.10.2514/6.2007-5628
  25. 25. G. M. Faeth, ‘Structure and atomization properties of dense turbulent sprays’, Symp. (Int.) Combust., vol. 23, no. 1, pp. 1345–1352, 1991.
  26. 26. S. James, M. Anand, and S. Pope, ‘The Lagrangian PDF transport method for simulations of gas turbine combustor flows’, in 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indiannapolis, Indiana, USA, 2002.10.2514/6.2002-4017
  27. 27. G. Faeth, ‘Spray combustion models - A review’, in 17th Aerospace Sciences Meeting, New Orleans, USA, 1979.10.2514/6.1979-293
  28. 28. W. A. Fiveland and A. S. Jamaluddin, ‘Three-dimensional spectral radiative heat transfer solutions by the discrete-ordinates method’, J. Thermophys. Heat Transf., vol. 5, no. 3, pp. 335–339, 1991.10.2514/3.268
  29. 29. S. I. Serbin, A. V. Kozlovskyi, and K. S. Burunsuz, ‘Investigations of nonstationary processes in low emissive gas turbine combustor with plasma assistance’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 44, no. 12, pp. 2960–2964, 2016.
  30. 30. I. B. Matveev, S. I. Serbin, V. V. Vilkul, and N. A. Goncharova, ‘Synthesis gas afterburner based on an injector type plasma-assisted combustion system’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 43, no. 12, pp. 3974–3978, 2015.
  31. 31. I. Matveev, S. Serbin, T. Butcher, N. Tutu, “Flow Structure investigation in a “Tornado” Combustor,” Collection of Technical Papers - 4th International Energy Conversion Engineering Conference, vol. 2, 2006, pp. 1001-1013.10.2514/6.2006-4141
  32. 32. S. Serbin., A. Kozlovskyi, K. Burunsuz, ‘Influence of plasma-chemical products on process stability in a low-emission gas turbine combustion chamber’, International Journal of Turbo and Jet Engines, 2021. Available from: https://doi.org/10.1515/tjeng-2020-0046.10.1515/tjeng-2020-0046
  33. 33. G. F. Romanovsky, S. I. Serbin, V. M. Patlaychuk, Modern Gas Turbine Units of Russia and Ukraine. Mikolayiv: NUK, 2005.
  34. 34. S. I. Serbin, I. B. Matveev, and G. B. Mostipanenko, ‘Plasma-assisted reforming of natural gas for GTL: Part II—modeling of the methane–oxygen reformer’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 43, no. 12, pp. 3964–3968, 2015.
  35. 35. S. I. Serbin, I. B. Matveev, and N. A. Goncharova, ‘Plasma-assisted reforming of natural gas for GTL—part I’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 42, no. 12, pp. 3896–3900, 2014.
  36. 36. I. B. Matveev, A. A. Tropina, S. I. Serbin, and V. Y. Kostyuk, ‘Arc Modeling in a Plasmatron Channel’, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 36, no. 1, pp. 293–298, 2008.10.1109/TPS.2007.913876
  37. 37. I. Matveev, S. Serbin, A. Mostipanenko, ‘Numerical Optimization of the “Tornado” Combustor Aerodynamic Parameters’, in 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA 2007-391, 2007.10.2514/6.2007-391
DOI: https://doi.org/10.2478/pomr-2021-0025 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 85 - 95
Published on: Jul 15, 2021
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Serhiy Serbin, Badri Diasamidze, Viktor Gorbov, Jerzy Kowalski, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.