Have a personal or library account? Click to login
Application of an Artificial Neural Network and Multiple Nonlinear Regression to Estimate Container Ship Length Between Perpendiculars Cover

Application of an Artificial Neural Network and Multiple Nonlinear Regression to Estimate Container Ship Length Between Perpendiculars

Open Access
|Jul 2021

References

  1. 1. D.G.M. Watson, “Practical Ship Design”, Volume 1. Elsevier Science. 1998.
  2. 2. K.J. Rawson and E.C. Tupper, Basic Ship Theory: Ship Dynamics and Design. Butterworth-Heinemann. 2001.
  3. 3. A. Papanikolaou, Ship Design: Methodologies of Preliminary Design. Dordrecht: Springer. 2014.10.1007/978-94-017-8751-2
  4. 4. J.H. Evans, Basic Design Concepts, Naval Engineers Journal, 1959.10.1111/j.1559-3584.1959.tb01836.x
  5. 5. D.J. Andrews, An Integrated Approach to Ship Synthesis, Trans. RINA. 1985.
  6. 6. W. Chądzyński, “Elements of contemporary design methods of floating objects”, Scientific Reports of Szczecin University of Technology. (in Polish). 2001.
  7. 7. G.P. Piko, Regression Analysis of Ship Characteristics, Canberra: C. J. THOMPSON Commonwealth Government Printer. 1980.
  8. 8. H.O. Kristensen, “Determination of Regression Formulas for Main Dimensions of Container Ships based on IHS Fairplay data”. Project no. 2010-56, Emissionsbeslutning sstøttesystem. Work Package 2, Report no. 03. Technical University of Denmark. 2013.
  9. 9. Sea-web Ships, IHS Markit, https://maritime.ihs.com, (accessed 8 Decemeber 2020)
  10. 10. S. Gurgen, I. Altin, I. and O. Murat, “Prediction of main particulars of a chemical tanker at preliminary ship design using artificial neural network”, Ships and Offshore Structures, 13(5), 459-465, 2018.10.1080/17445302.2018.1425337
  11. 11. A.D. Alkan, K. Gulez and H. Yilmaz, “Design of a robust neural network structure for determining initial stability particulars of fishing vessels”, Ocean Engineering 31 761–777, 2004.10.1016/j.oceaneng.2003.08.002
  12. 12. S. Ekinci, U.B. Celebi, M. Bal, M.F. Amasyali and U.K. Boyaci, “Predictions of oil/chemical tanker main design parameters using computational intelligence techniques”, Applied Soft Computing, 11 2356–2366, 2011.10.1016/j.asoc.2010.08.015
  13. 13. T. Abramowski, “Application of Artificial Intelligence Methods to Preliminary Design of Ships and Ship Performance Optimization”, Naval Engineers Journal, 125 (3) 101-112, 2013.
  14. 14. T. Cepowski, “The prediction of ship added resistance at the preliminary design stage by the use of an artificial neural network”, Ocean Engineering 195, 106657. 2020. doi.org/10.1016/j.oceaneng.2019.106657
  15. 15. J.G. Song, L.H. Liang, S.T. Zhang and J.M. Wang, “Design and experimental investigation of a GA-based control strategy for a low-speed fin stabilizer”, Ocean Engineering, 2018. 10.1016/j.oceaneng.2020.108234
  16. 16. V. Sahin and N. Vardar, “Determination of Wastewater Behavior of Large Passenger Ships Based on Their Main Parameters in the Pre-Design Stage”, Journal of Marine Science and Engineering, 8 (8), 2020. DOI: 10.3390/jmse8080546
  17. 17. Luan Thanh Le, Gunwoo Lee, Keun-Sik Park and Hwayoung Kim, “Neural network-based fuel consumption estimation for container ships in Korea”, Maritime Policy and Management, 47:5, 615-632, 2020. DOI: 10.1080/03088839.2020.1729437
  18. 18. X. Cheng, S. Chen and C. Diao, “Simplifying Neural Network Based Model for Ship Motion Prediction: A Comparative Study of Sensitivity Analysis”, Proceeding of the ASME 36th International Conference on Ocean, Offshore and Arctic Engineering, Vol. 1. 2017.10.1115/OMAE2017-61474
  19. 19. S. Haykin, “Neural Networks: A Comprehensive Foundation”. New York: Macmillan Publishing. 1994.
  20. 20. J.H. Lee, T. Delbruck and M. Pfeiffer, “Training Deep Spiking Neural Networks Using Backpropagation”, Frontiers in Neuroscience, 10, 508, 2016.10.3389/fnins.2016.00508
  21. 21. L. Fausett, Fundamentals of Neural Networks. New York: Prentice Hall. 1994.
  22. 22. D. Patterson, Artificial Neural Networks. Singapore: Prentice Hall. 1996.
  23. 23. C. Bishop, Neural Networks for Pattern Recognition, Oxford: University Press. 1995.10.1201/9781420050646.ptb6
  24. 24. J. Shepherd, Second-Order Methods for Neural Networks. Springer: New York. 1997.10.1007/978-1-4471-0953-2
  25. 25. J. Adamowski, H.F. Chan, S.O. Prasher, B. Ozga-Zielinski and A. Sliusarieva, “Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal”, Water Resources Research, 48W01528, 2012.10.1029/2010WR009945
  26. 26. E. Tsykin, “Multiple nonlinear regressions derived with choice of free parameters, Applied Mathematical Modelling”, Volume 8 (4) 288-292, 1984.10.1016/0307-904X(84)90164-1
  27. 27. T. Cepowski, ndCurveMaster n-dimensional Curve and Surface Fitting Software, https://www.ndcurvemaster.com, (accessed 13 December 2020).
DOI: https://doi.org/10.2478/pomr-2021-0019 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 36 - 45
Published on: Jul 15, 2021
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Tomasz Cepowski, Paweł Chorab, Dorota Łozowicka, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.