Have a personal or library account? Click to login
Research on Ship Trajectory Extraction Based on Multi-Attribute DBSCAN Optimisation Algorithm Cover

Research on Ship Trajectory Extraction Based on Multi-Attribute DBSCAN Optimisation Algorithm

Open Access
|Apr 2021

References

  1. 1. Yang, B. International standard of automatic ship identification system and its formulation. Standardization of Transportation, 2002 (01):42-44.
  2. 2. Zhao, L., Shi, G. A method for simplifying ship trajectory based on improved Douglas-Peucker algorithm. Ocean Engineering, Vol. 166, 2018: 37-46.10.1016/j.oceaneng.2018.08.005
  3. 3. Zhao, L., Shi, G., Yang, J. Ship trajectories pre-processing based on AIS data. Journal of Navigation, 2018.10.1017/S0373463318000188
  4. 4. Wang, J., Zhu, C., Zhou, Y., Zhang, W. Vessel Spatio-temporal Knowledge Discovery with AIS Trajectories Using Co-clustering. Journal of Navigation, Nov 2017.10.1017/S0373463317000406
  5. 5. Zhang, Y., Shi, G., Li, S., Zhang, S. Vessel trajectory online multi-dimensional simplification algorithm. Journal of Navigation, 2020.10.1017/S037346331900064X
  6. 6. Zhang, L., Meng, Q., Xiao, Z., Fu, X. A novel ship trajectory reconstruction approach using AIS data. Ocean Engineering, 2018.10.1016/j.oceaneng.2018.03.085
  7. 7. Yan, Z., Xiao, Y., Cheng, L., He, R., Ruan, X., Zhou, X., Li, M., Bin, R. Exploring AIS data for intelligent maritime routes extraction. Applied Ocean Research, 2020.10.1016/j.apor.2020.102271
  8. 8. Wei, Z., Xie, X., Zhang, X. AIS trajectory simplification algorithm considering ship behaviours. Ocean Engineering, 2020.10.1016/j.oceaneng.2020.108086
  9. 9. Li, H., Liu, J., Wu, K., Yang, Z., Liu, R.W., Xiong, N. Spatio-temporal vessel trajectory clustering based on data mapping and density. IEEE Access, 2018, 6:58939-58954.10.1109/ACCESS.2018.2866364
  10. 10. Sheng, P., Yin, J. Extracting shipping route patterns by trajectory clustering model based on AIS data. Sustainability, 2018, 10(2018):2327.10.3390/su10072327
  11. 11. [11]Xiao, X., Shao, Z., Pan, J., Ji, X. Ship trajectory clustering model based on AIS information and its application. China Navigation, 2015, 38(02):82-86.
  12. 12. Zhou, H., Chen, Y., Chen, L. Clustering analysis and application of ship trajectory. Computer Simulation, 2020, 37(10):113-118+199.
  13. 13. Cui, K. Research on ship AIS trajectories prediction method based on machine learning. Zhengzhou University, 2020.
  14. 14. Liu, Y., Shi, B. Research on ship track clustering technology based on skeleton extraction. Information Technology, 2020, 44(03):50-53+58.
  15. 15. Jiang, Y., Xiong, Z., Tang, J. Ship trajectory clustering algorithm based on trajectory segment DBSCAN. China Navigation, 2019, 42(03):1-5.
  16. 16. Zhao, L., Shi, G., Yang, J. Adaptive hierarchical clustering of ship trajectory based on DBSCAN algorithm. China Navigation, 2018, 41(03):53-58.
  17. 17. Peng, X., Gao, S., Chu, X., He, Y., Lu, C. Clustering method of ship trajectory based on Spark. China Navigation, 2017, 40(03):49-53+68
  18. 18. Frey, B.J., Dueck, D. Clustering by passing message between data points. Science, 2007, 315(5814):972-976.10.1126/science.113680017218491
  19. 19. Jain, A.K., Dubes, R.C. Algorithms for clustering data. Technometrics, 2015, 32(32):227-229.
  20. 20. Yang, W., Long, H., Shao, Y., Du, Q. Research on density calculation based on Chebyshev distance and clustering method of K-means. Communications Technology, 2019, 52(04):833-838.
  21. 21. Chen, B. Research on spatio-temporal similarity of vehicle trajectories based on clustering algorithm. Fujian Normal University, 2015.
  22. 22. Design and implementation of ship trajectory clustering system based on bright [AIS]. Dalian University, 2016
DOI: https://doi.org/10.2478/pomr-2021-0013 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 136 - 148
Published on: Apr 30, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Xiaofeng Xu, Deqaing Cui, Yun Li, Yingjie Xiao, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.