Have a personal or library account? Click to login
Improvement of the Cargo Fleet Vessels Power Plants Ecological Indexes by Development of the Exhaust Gas Systems Cover

Improvement of the Cargo Fleet Vessels Power Plants Ecological Indexes by Development of the Exhaust Gas Systems

Open Access
|Apr 2021

References

  1. 1. MARPOL 73/78 Dodatok VI (take a look) before the Convention “Rules for the protection of shipwrecking”. Retrieved from http://docs.cntd.uа/document/499014496.
  2. 2. Z. Yang, Q. Tan, and P. Geng, “Combustion and emissions investigation on low-speed two-stroke marine diesel engine with low sulfur diesel fuel,” Polish Maritime Research, vol. 1, no. 101, pp. 153–161, 2019. Retrieved from: https://doi.org/10.2478/pomr-2019-0017.10.2478/pomr-2019-0017
  3. 3. O. Cherednichenko and V. Mitienkova, “Analysis of the impact of thermochemical recuperation of waste heat on the energy efficiency of gas carriers,” Journal of Marine Science and Application, 2020. Retrieved from https://doi.org/10.1007/s11804-020-00127-5.10.1007/s11804-020-00127-5
  4. 4. O. Cherednichenko, S. Serbin, and M. Dzida, “Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units,” Polish Maritime Research, vol. 26, no. 3, pp. 181–187, 2019. Retrieved from https://doi.org/10.2478/pomr-2019-0059.10.2478/pomr-2019-0059
  5. 5. Y. Kondratenko, V. Korobko, O. Korobko, G. Kondratenko, and O. Kozlov, “Green-IT approach to design and optimization of thermoacoustic waste heat utilization plant based on soft computing,” Studies in Systems, Decision and Control, 287–311, 2017. Retrieved from http://doi.org/doi:10.1007/978-3-319-55595-9_14.10.1007/978-3-319-55595-9_14
  6. 6. Y. Kondratenko, S. Serbin, V. Korobko, and O. Korobko, “Optimisation of bi-directional pulse turbine for waste heat utilization plant based on green IT paradigm” Studies in Systems, Decision and Control, pp. 469–485, 2018. http://doi.org/doi:10.1007/978-3-030-00253-4_20.10.1007/978-3-030-00253-4_20
  7. 7. V. Kornienko, R. Radchenko, A. Stachel, A. Andreev, and M. Pyrysunko, “Correlations for pollution on condensing surfaces of exhaust gas boilers with water-fuel emulsion combustion,” Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, Springer, Cham, pp. 530–539, 2020. Retrieved from http://doi:10.1007/978-3-030-40724-7_54.10.1007/978-3-030-40724-7_54
  8. 8. Product manual scrubber (scrubber) (2013). Wartsila, 98 p. Retrieved from https://cdn.wartsila.com/docs/default-source/local-files/russia/products/project-guides/wärtsiläscrubber-product-guide-rev-c_rus.pdf?sfvrsn=73676f44_2.
  9. 9. Unit for reducing NOx emissions by technology SCR by WÄRTSILÄ. Retrieved from https://cdn.wartsila.com/docs/default-source/local-files/russia/products/nox_reducers-rus.pdf?sfvrsn=f1696f44_2.
  10. 10. O.V. Serazhutdinov and V.A. Chistyakov, “Technologies for the reduction of nitrogen oxides in the exhaust gases of marine diesel engines” Marine Intelligent Technology, №4-1(30), pp. 23–28, 2015.
  11. 11. V.V. Le and T.H. Truong, “A simulation study to assess the economic, energy and emissions characteristics of a marine engine equipped with exhaust gas recirculation,” 1st International Conference on Sustainable Manufacturing, Materials and Technologies, 2020. Retrieved from http://doi.org/doi:10.1063/5.0000135.10.1063/5.0000135
  12. 12. R. Radchenko, M. Pyrysunko, V. Kornienko, R. Patyk, and O. Moskovko, “Improving the ecological and energy efficiency of internal combustion engines by ejector chiller using recirculation gas heat,” ICTM 2020, Advances in Intelligent Systems and Computing, Springer, Cham, 10 p., 2020.10.1007/978-3-030-66717-7_45
  13. 13. Y. Zhao, Y. Fan, K. Fagerholt, and J. Zhou, “Reducing sulfur and nitrogen emissions in shipping economically” Transportation Research Part D, Transport and Environment, vol. 90, 2021. Retrieved from https://doi.org/10.1016/j.trd.2020.102641.10.1016/j.trd.2020.102641
  14. 14. New system PureSOx Express. Retrieved from https://www.alfalaval.ua/media/news/2020/new-alfa-laval-puresox-express-offers-easy-access-to-sox-scrubber-advantages/.
  15. 15. Y.-S. Choi, and T.-W. Lim, “Numerical simulation and validation in scrubber wash water discharge from ships,” Journal of Marine Science and Engineering, vol. 8, no. 4, p. 272, 2020. Retrieved from http://doi.org/doi:10.3390/jmse8040272.10.3390/jmse8040272
  16. 16. S. Endres et al., “A new perspective at the ship-airsea-interface: The environmental impacts of exhaust gas scrubber discharge,” Frontiers in Marine Science, vol. 5, 2018. Retrieved from http://doi.org/doi:10.3389/fmars.2018.00139.10.3389/fmars.2018.00139
  17. 17. H. Xi, S. Zhou, and Z. Zhang, “A novel method using Na2S2O8 as an oxidant to simultaneously absorb SO2 and NO from marine diesel engine exhaust gases,” Energy & Fuels, 2020. Retrieved from http://doi.org/doi:10.1021/acs.energyfuels.9b03334.10.1021/acs.energyfuels.9b03334
  18. 18. Y.A. Bystrov, S.A. Isayev, N.A. Kudryavtsev, and A. I. Leont’yev, Numerical Simulation of Heat Transfer Vortex Intensification in the Pipe Packs. St. Petersburg: Shipbuilding, 2005.
  19. 19. T.B. Gatski, M.Y. Hussaini, and J.L. Lumley, Simulation and Modelling of Turbulent Flows. Oxford, New York: Oxford University Press, 314 p., 1996. Retrieved from https://www.academia.edu/10100418/SIMULATION_AND_MODELLING_OF_TURBULENT_FLOWS (last accessed: 20.01.2021).10.1093/oso/9780195106435.001.0001
  20. 20. S. Sarkar and L. Balakrishnan, Application of a Reynolds-Stress Turbulence Model to the Compressible Shear Layer, 1990. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a227097.pdf (last accessed: 20.01.2021).
  21. 21. Introducing code_Saturne. Retrieved from https://www.code-saturne.org/cms/.
  22. 22. Computational Fluid Dynamics: CFD Software. Retrieved from https://www.simscale.com/product/cfd/.
  23. 23. B.V. Dymo, A.Y. Voloshyn, A.E. Yepifanov, and V.V. Kuznetsov, “Increase of ship power plants gas-air cooler efficiency,” Problemele Energeticii Regionale, vol. 2, no. 34, pp. 113–124, 2017.
  24. 24. B.V. Dymo, A.Y. Voloshyn, and V.I. Kharchenko, “The research of gas-dynamic processes in the gas-air cooler of the ship power plant,” Zbirnyk Naukovykh Prats’ NUK, vol. 6, pp. 81–89, 2010.
  25. 25. A.A Khalatov, Heat Transfer and Fluid Mechanics over Surface Indentations (Dimples). Kiev: National Academy of Sciences of Ukraine, Institute of Engineering Thermophysics, 64 p., 2005.
  26. 26. V.V. Kuznetsov, “Generalization of the rules in the heat transfer of swirling flows inside the tubular channels of power plants heat transfer devices,” Collection of Scientific Papers of Admiral Makarov National University of Shipbuilding vol. 5, pp. 46–52, 2015.
DOI: https://doi.org/10.2478/pomr-2021-0009 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 97 - 104
Published on: Apr 30, 2021
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Valerii Kuznetsov, Boris Dymo, Svitlana Kuznetsova, Mykola Bondarenko, Andrii Voloshyn, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.