Have a personal or library account? Click to login

Influence of Fin’s Material Capabilities on the Propulsion System of Biomimetic Underwater Vehicle

Open Access
|Dec 2020

References

  1. 1. Behbahani S. B., Tan X. (2017). Role of pectoral fin f lexibility in robotic fish performance, Journal of Nonlinear Science, 27, 1155–1181, https://doi.org/10.1007/s00332-017-9373-6.10.1007/s00332-017-9373-6
  2. 2. Tytella E. C., Hsu C.-Y., Fauci, L. J. (2014). The role of mechanical resonance in the neural control of swimming in fishes, Zoology, 117(1), 48–56, https://doi.org/10.1016/j.zool.2013.10.011.10.1016/j.zool.2013.10.011452021324433627
  3. 3. Jurczyk K., Piskur P., Szymak P. (2020). Parameters identification of the flexible fin kinematics model using vision and genetic algorithms, Polish Maritime Research, 27(2), 39–47, https://doi.org/10.2478/pomr-2020-0025.10.2478/pomr-2020-0025
  4. 4. Kancharala A. K. (2015). The role of flexibility on propulsive performance of flapping fins, Doctor of Philosophy in Aerospace Engineering, Virginia Tech, Blacksburg, Virginia, https://doi.org/10919/56563.
  5. 5. Lauder G. V., Quinn D. B., Smits A. J. (2014). Scaling the propulsive performance of heaving flexible panels, Journal of Fluid Mechanics, 738, 250–267, https://doi.org/10.1017/jfm.2013.597.10.1017/jfm.2013.597
  6. 6. Lighthill M. J. (1960). Note on the swimming of slender fish, Journal of Fluid Mechanics, 9(2), 305–317, https://doi.org/10.1017/S0022112060001110.10.1017/S0022112060001110
  7. 7. Morawski M., Malec M., Szymak P., Trzmiel A. (2014). Analysis of parameters of traveling wave impact on the speed of biomimetic underwater vehicle, Solid State Phenomena, 210, 273–279, https://doi.org/10.4028/www.scientific.net/SSP.210.273.10.4028/www.scientific.net/SSP.210.273
  8. 8. Morawski M., Malec M., Zając J. (2014). Development of CyberFish – Polish Biomimetic Unmanned Underwater Vehicle BUUV, Applied Mechanics and Materials, 613, 76–82, https://doi.org/10.4028/www.scientific.net/AMM.613.76.10.4028/www.scientific.net/AMM.613.76
  9. 9. Morawski M., Słota A., Zając J., Malec M. (2020). Fish-like shaped robot for underwater surveillance and reconnaissance – Hull design and study of drag and noise, Ocean Engineering, 217, 107889, https://doi.org/10.1016/j.oceaneng.2020.107889.10.1016/j.oceaneng.2020.107889
  10. 10. Piskur P., Szymak P., Flis L., Jaskólski K., Gasiorowski M. (2020). Hydroacoustic system in a biomimetic underwater vehicle to avoid collision with vessels with low-speed propellers in a controlled environment, Sensors, 20(4), 968, https://doi.org/10.3390/s20040968.10.3390/s20040968707042232054036
  11. 11. Piskur P., Szymak P., Flis L., Sznajder J. (2020). Analysis of a fin drag force in a biomimetic underwater vehicle, NAŠE MORE: znanstveni časopis za more i pomorstvo, 67(3), 192–198, https://doi.org/10.17818/NM/2020/3.2.10.17818/NM/2020/3.2
  12. 12. Piskur P., Szymak P., Sznajder J. (2020). Identification in a laboratory tunnel to control fluid velocity. In: Bartoszewicz A., Kabziński J., Kacprzyk J. (eds) Advanced, Contemporary Control. Springer, Cham, https://doi.org/10.1007/978-3-030-50936-1_128.10.1007/978-3-030-50936-1_128
  13. 13. Przybylski M. (2019). Mathematical model of biomimetic underwater vehicle, Proceedings of the 33rd International ECMS Conference on Modelling and Simulation, Caserta, Italy (pp. 343–347), http://doi.org/10.7148/2019.10.7148/2019
  14. 14. Smits A.J., 2019. Undulatory and oscillatory swimming, Journal of Fluid Mechanics, 874, P1, https://doi.org/10.1017/jfm.2019.284.10.1017/jfm.2019.284
  15. 15. Szymak P., Morawski M., Malec M. (2012). Conception of research on bionic underwater vehicle with undulating propulsion, Solid State Phenomena, 180, 160–167, https://doi.org/10.4028/www.scientific.net/SSP.180.160.10.4028/www.scientific.net/SSP.180.160
  16. 16. Szymak P., Przybylski M., (2018). Thrust measurement of biomimetic underwater vehicle with undulating propulsion, Scientific Journal of Polish Naval Academy, 213(2), 69–82, https://doi.org/10.2478/sjpna-2018-0014.10.2478/sjpna-2018-0014
  17. 17. Taylor G. K., Nudds R. L, Thomas A. L. R. (2003). Flying and swimming animals at a Strouhal number tuned for high power efficiency, Nature, 425, 707–710. https://doi.org/10.1038/nature02000.10.1038/nature0200014562101
  18. 18. Tytell E. D., Leftwich M. C., Hsu C.-H., Griffith B. E., Cohen A. H., Smits A. J., Hamlet C, Fauci, L. J. (2016). Role of body stiffness in undulatory swimming: Insights from robotic and computational models, Physical Review Fluids, 1, 073202, https://doi.org/10.1103/PhysRevFluids.1.073202.10.1103/PhysRevFluids.1.073202
  19. 19. Wu X., Zhang X., Tian X., Li X., Lu W. (2020). A review on fluid dynamics of flapping foils, Ocean Engineering, 195, 106712, https://doi.org/10.1016/j.oceaneng.2019.106712.10.1016/j.oceaneng.2019.106712
  20. 20. Yang L., Xiao Q., Shi G., Li Wen, Chen D., Pan G. (2020). A fluid–structure interaction solver for the study on a passively deformed fish fin with non-uniformly distributed stiffness, Journal of Fluids and Structures, 92, 102778, https://doi.org/10.1016/j.jfluidstructs.2019.102778.10.1016/j.jfluidstructs.2019.102778
DOI: https://doi.org/10.2478/pomr-2020-0078 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 179 - 185
Published on: Dec 24, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Pawel Piskur, Piotr Szymak, Zygmunt Kitowski, Leszek Flis, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.