2. M. Rowe and S. Liu, “Recent developments in underwater wet welding”, Science and Technology of Welding and Joining, vol. 6, no. 6, pp. 387-396, 2001.10.1179/stw.2001.6.6.387
3. Y. Shi et al., “Microstructure evolution and mechanical properties of underwater dry and local dry cavity welded joints of 690 MPa grade high strength steel”, Materials, vol. 11, no. 1, p. 167, 2018.10.3390/ma11010167579366529361743
4. S. Godwin Barnabas, S. Rajakarunakaran, G. Satish Pandian, A. Muhamed Ismail Buhari, and V. Muralidharan, “Review on enhancement techniques necessary for the improvement of underwater welding”, Materials Today: Proceedings, 2020.10.1016/j.matpr.2020.03.725
5. N. Guo, Y. Fu, X. Xing, Y. Liu, S. Zhao, and J. Feng, “Underwater local dry cavity laser welding of 304 stainless steel”, Journal of Materials Processing Technology, vol. 260, pp. 146-155, 2018.10.1016/j.jmatprotec.2018.05.025
6. J. Tomków, J. Łabanowski, D. Fydrych, G. Rogalski, “Cold cracking of S460N steel welded in water environment”, (in English), Polish Maritime Research, vol. 25, no. 3, pp. 131-136, 01 Sep. 2018.10.2478/pomr-2018-0104
7. C. J. Bayley and A. Mantei, “Influence of weld heat input on the fracture and metallurgy of HSLA-65”, Canadian Metallurgical Quarterly, vol. 48, no. 3, pp. 311-316, 2009.10.1179/cmq.2009.48.3.311
8. C. Pandey, M. M. Mahapatra, P. Kumar, F. Daniel, and B. Adhithan, “Softening mechanism of P91 steel weldments using heat treatments”, Archives of Civil and Mechanical Engineering, vol. 19, no. 2, pp. 297-310, 2019.10.1016/j.acme.2018.10.005
9. C. L. Davis and J. E. King, “Effect of cooling rate on intercritically reheated microstructure and toughness in high strength low alloy steel”, Materials Science and Technology, vol. 9, no. 1, pp. 8-15, 1993.10.1179/mst.1993.9.1.8
10. A. Lambert, A. Lambert, J. Drillet, A. F. Gourgues, T. Sturel, and A. Pineau, “Microstructure of martensite–austenite constituents in heat affected zones of high strength low alloy steel welds in relation to toughness properties”, Science and Technology of Welding and Joining, vol. 5, no. 3, pp. 168-173, 2000.10.1179/136217100101538164
11. D. M. Viano, N. U. Ahmed, and G. O. Schumann, “Influence of heat input and travel speed on microstructure and mechanical properties of double tandem submerged arc high strength low alloy steel weldments”, Science and Technology of Welding and Joining, vol. 5, no. 1, pp. 26-34, 2000.10.1179/stw.2000.5.1.26
12. J. Tomków and A. Janeczek, “Underwater in situ local heat treatment by additional stitches for improving the weldability of steel”, Applied Sciences, vol. 10, no. 5, 2020.10.3390/app10051823
13. H. Chen, N. Guo, C. Liu, X. Zhang, C. Xu, and G. Wang, “Insight into hydrostatic pressure effects on diffusible hydrogen content in wet welding joints using in-situ X-ray imaging method”, International Journal of Hydrogen Energy, vol. 45, no. 16, pp. 10219-10226, 2020.10.1016/j.ijhydene.2020.01.195
14. J. Tomków, D. Fydrych, G. Rogalski, and J. Łabanowski, “Temper bead welding of S460N steel in wet welding conditions”, Advances in Materials Science, vol. 18, no. 3, pp. 5-14, 01 Sep. 2018.10.1515/adms-2017-0036
15. H. Zhang, X. Dai, J. Feng, and L. L. Hu, “Preliminary investigation on real-time induction heating-assisted underwater wet welding”, vol. 1, pp. 8-15, 2015.
16. J. Wang, Q. Sun, T. Zhang, X. Tao, P. Jin, and J. Feng, “Arc stability indexes evaluation of ultrasonic wave-assisted underwater FCAW using electrical signal analysis”, The International Journal of Advanced Manufacturing Technology, vol. 103, no. 5, pp. 2593-2608, 2019.10.1007/s00170-019-03463-1
17. H. Chen, N. Guo, K. Xu, C. Xu, L. Zhou, and G. Wang, “In-situ observations of melt degassing and hydrogen removal enhanced by ultrasonics in underwater wet welding”, Materials & Design, vol. 188, p. 108482, 2020.10.1016/j.matdes.2020.108482
18. J. Tomków, D. Fydrych, and G. Rogalski, “Role of bead sequence in underwater welding”, Materials, vol. 12, no. 20, 2019.10.3390/ma12203372682935331623063
19. C. Pandey, M. M. Mahapatra, P. Kumar, N. Saini, and A. Srivastava, “Microstructure and mechanical property relationship for different heat treatment and hydrogen level in multi-pass welded P91 steel joint”, Journal of Manufacturing Processes, vol. 28, pp. 220-234, 2017.10.1016/j.jmapro.2017.06.009
20. C. Pandey, M. M. Mahapatra, P. Kumar, and S. Sirohi, “Fracture behaviour of crept P91 welded sample for different post weld heat treatments condition”, Engineering Failure Analysis, vol. 95, pp. 18-29, 2019.10.1016/j.engfailanal.2018.08.029
21. U. Ofem, S. Ganguly, S. Williams, and N. Woodward, “Investigation of thermal cycle and metallurgical characteristics of hyperbaric gas metal arc welding”, International Journal of Offshore and Polar Engineering, vol. 24, no. 03, pp. 206-212, 2014.
22. J. Huang, L. Xue, J. Huang, Y. Zou, H. Niu, and D. Tang, “Arc behavior and joints performance of CMT welding process in hyperbaric atmosphere”, Acta Metall Sin, vol. 52, no. 1, pp. 93-99, 2015.
23. I. Bunaziv, R. Aune, V. Olden, and O. M. Akselsen, “Dry hyperbaric welding of HSLA steel up to 35 bar ambient pressure with CMT arc mode”, The International Journal of Advanced Manufacturing Technology, vol. 105, no. 5, pp. 2659-2676, 2019.10.1007/s00170-019-04511-6
24. Y. Hu, Y. Shi, K. Sun, and X. Shen, “Microstructure evolution and mechanical performance of underwater local dry welded DSS metals at various simulated water depths”, Journal of Materials Processing Technology, vol. 264, pp. 366-376, 2019.10.1016/j.jmatprotec.2018.09.023
27. ASTM E8 / E8M-16ae1, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016, Available: http://www.astm.org.
28. A. S. Azar, N. Woodward, H. Fostervoll, and O. M. Akselsen, “Statistical analysis of the arc behavior in dry hyperbaric GMA welding from 1 to 250 bar”, Journal of Materials Processing Technology, vol. 212, no. 1, pp. 211-219, 2012.10.1016/j.jmatprotec.2011.09.006
30. I. A. Yakubtsov, P. Poruks, and J. D. Boyd, “Microstructure and mechanical properties of bainitic low carbon high strength plate steels”, Materials Science and Engineering: A, vol. 480, no. 1, pp. 109-116, 2008.10.1016/j.msea.2007.06.069
32. Y. M. Kim, H. Lee, and N. J. Kim, “Transformation behavior and microstructural characteristics of acicular ferrite in linepipe steels”, Materials Science and Engineering: A, vol. 478, no. 1, pp. 361-370, 2008.10.1016/j.msea.2007.06.035
33. M. Fattahi, N. Nabhani, M. Hosseini, N. Arabian, and E. Rahimi, “Effect of Ti-containing inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld metals”, Micron, vol. 45, pp. 107-114, 2013.10.1016/j.micron.2012.11.00423238108
34. I. Gutiérrez, “Effect of microstructure on the impact toughness of Nb-microalloyed steel: Generalisation of existing relations from ferrite–pearlite to high strength microstructures”, Materials Science and Engineering: A, vol. 571, pp. 57-67, 2013.10.1016/j.msea.2013.02.006
35. G. Terán, S. Capula-Colindres, D. Angeles-Herrera, J. C. Velázquez, and M. J. Fernández-Cueto, “Estimation of fracture toughness KIC from Charpy impact test data in T-welded connections repaired by grinding and wet welding”, Engineering Fracture Mechanics, vol. 153, pp. 351-359, 2016.10.1016/j.engfracmech.2015.12.010