Have a personal or library account? Click to login

Experimental Research on Insufficient Water Lubrication of Marine Stern Tube Journal Bearing with Elastic Polymer Bush

Open Access
|Dec 2020

References

  1. 1. Ogle KJ, Carter CD. Converting an icebreaker from an oil lubricated stern tube bearing system to a seawater lubricated stern tube bearing considering environmental and operating costs. Int. Conf. Exhib. Perform. Ships Struct. Ice 2010, ICETECH 2010, 2010, p. 141–5.10.5957/ICETECH-2010-184
  2. 2. Richard C, Groves S. An Oil to Water Conversion of a Hydro Turbine Main Guide Bearing – Technical and Environmental Aspects. Thordon Bear Newsworks 20042 2004:1–11. https://thordonbearings.com/docs/default-source/hydro-power/technical-papers/technical-paper---oil-to-water-conversion-of-a-hydro-turbine-main-guide-bearing.pdf?sfvrsn=9f11eb91_8 (accessed April 22, 2020).
  3. 3. Auger G, Eng P. Reducing Maintenance with Water Lubricated Turbine Guide Bearings - Design Principles & Case Studies. Tribodays 2017.
  4. 4. Roldo L, Komar I, Vulić N. Design and Materials Selection for Environmental Friendly Ship Propulsion System. J Mech Eng 2013;1:25–31.10.5545/sv-jme.2012.601
  5. 5. Thordon Bearings Inc. Stern Tube Conversions Reduce Pollution Risk. Thordon Bear INC Mar Issue 2012;1. https://thordonbearings.com/docs/default-source/marine/references/stern-tube-conversions-reduce-pollution-risk.pdf?sfvrsn=bb7e9998_8 (accessed April 22, 2020).
  6. 6. Oil to water conversions | Convert your seal to water lubrication. Wartsila 2013. https://www.wartsila.com/docs/default-source/Service-catalogue-files/Seals-Bearings-services/stern-tube-conversions---oil-to-water.pdf?sfvrsn=0 (accessed April 22, 2020).
  7. 7. DuraBlue Composite Water-Lubricated Stern Tube Bearings. Duramax Mar 2018. http://www.duramaxmarine.com/pdf/DuraBlue-Bearing_broch2019.pdf (accessed April 22, 2020).
  8. 8. Litwin W. Water-lubricated bearings of ship propeller shafts - problems, experimental tests and theoretical investigations. Polish Marit Res 2009;16. https://doi.org/10.2478/v10012-008-0055-z.10.2478/v10012-008-0055-z
  9. 9. L. Shaft line alignment analysis taking ship construction f lexibility and deformations into consideration. Mar Struct 2005;18:62–84. https://doi.org/10.1016/J.MARSTRUC.2005.05.002.10.1016/j.marstruc.2005.05.002
  10. 10. Bouyer J, Fillon M. An Experimental Analysis of Misalignment Effects on Hydrodynamic Plain Journal Bearing Performances. J Tribol 2002;124:313. https://doi.org/10.1115/1.1402180.10.1115/1.1402180
  11. 11. Litwin W, Olszewski A, Wodtke M. Influence of Shaft Misalignment on Water Lubricated Turbine Sliding Bearings with Various Bush Modules of Elasticity. Key Eng Mater 2011;490:128–34. https://doi.org/10.4028/www.scientific.net/KEM.490.128.10.4028/www.scientific.net/KEM.490.128
  12. 12. Sun J, Changlin G. Hydrodynamic lubrication analysis of journal bearing considering misalignment caused by shaft deformation. Tribol Int 2004;37:841–8. https://doi.org/10.1016/j.triboint.2004.05.007.10.1016/j.triboint.2004.05.007
  13. 13. Litwin W. Influence of main design parameters of ship propeller shaft water-lubricated bearings on their properties. Polish Marit Res 2010;17:39–45. https://doi.org/10.2478/v10012-010-0034-z.10.2478/v10012-010-0034-z
  14. 14. Dong CL, Yuan CQ, Bai XQ, Yang Y, Yan XP. Study on wear behaviours for NBR/stainless steel under sand water-lubricated conditions. Wear 2015;332–333:1012–20. https://doi.org/10.1016/J.WEAR.2015.01.009.10.1016/j.wear.2015.01.009
  15. 15. Ginzburg BM, Tochil’nikov DG, Bakhareva VE, Anisimov A V., Kireenko OF. Polymeric materials for water-lubricated plain bearings. Russ J Appl Chem 2006;79:695–706. https://doi.org/10.1134/S1070427206050016.10.1134/S1070427206050016
  16. 16. Akchurin A, Bosman R, Lugt PM, van Drogen M. Analysis of Wear Particles Formed in Boundary-Lubricated Sliding Contacts. Tribol Lett 2016;63:1–14. https://doi.org/10.1007/s11249-016-0701-z.10.1007/s11249-016-0701-z
  17. 17. Młynarczak A. A case of bearings seizing in shaft pipe. Sci J Polish Nav Acad 2014;199:51–63. https://doi.org/10.5604/0860889x.1139633.10.5604/0860889X.1139633
  18. 18. Pap B, Fillon M, Guillemont M, Bauduin L, Chocron J, Gédin P, et al. Experimental and Numerical Analysis on the Seizure of a Carbon-Filled PTFE Central Groove Journal Bearing during Start-Up Period. Lubricants 2018;6:14. https://doi.org/10.3390/lubricants6010014.10.3390/lubricants6010014
  19. 19. Bishop JL, Ettles CMM. The seizure of journal bearings by thermoelastic mechanisms. Wear 1982;79:37–52. https://doi.org/10.1016/0043-1648(82)90202-2.10.1016/0043-1648(82)90202-2
  20. 20. McCarthy, D. M. C.; Glavatskih SB. Assessment of polymer composites for hydrodynamic journal-bearing applications. Lubr Sci 2009:123–34. https://doi.org/10.1002/ls.
  21. 21. Del Din M, Kassfeldt E. Wear characteristics with mixed lubrication conditions in a full scale journal bearing. Wear 1999;232:192–8. https://doi.org/10.1016/S0043-1648(99)00145-3.10.1016/S0043-1648(99)00145-3
  22. 22. Chen S, Li J, Wei L, Jin Y, Shang H, Hua M, et al. Tribological properties of polyimide-modified UHMWPE for bushing materials of seawater lubricated sliding bearings. Tribol Int 2017;115:470–6. https://doi.org/10.1016/J.TRIBOINT.2017.06.011.10.1016/j.triboint.2017.06.011
  23. 23. Chen B, Wang J, Yan F. Friction and Wear Behaviors of Several Polymers Sliding Against GCr15 and 316 Steel Under the Lubrication of Sea Water. Tribol Lett 2011;42:17–25. https://doi.org/10.1007/s11249-010-9743-9.10.1007/s11249-010-9743-9
  24. 24. Demirci MT, Düzcükoğlu H. Wear behaviors of Polytetrafluoroethylene and glass fiber reinforced Polyamide 66 journal bearings. Mater Des 2014;57:560–7. https://doi.org/10.1016/j.matdes.2014.01.013.10.1016/j.matdes.2014.01.013
  25. 25. Wasilczuk M. Polymer lining in the design of hydrodynamic thrust bearings. Tribologia 2007;1:211–23.
  26. 26. Litwin W. Water Lubricated Marine Stern Tube Bearings: Attempt at Estimating Hydrodynamic Capacity. ASME/ STLE 2009 Int. Jt. Tribol. Conf., Memphis, Tennessee, USA: ASMEDC; 2009, p. 179–81. https://doi.org/10.1115/IJTC2009-15068.10.1115/IJTC2009-15068
  27. 27. Linjamaa A, Lehtovaara A, Larsson R, Kallio M, Söchting S. Modelling and analysis of elastic and thermal deformations of a hybrid journal bearing. Tribol Int 2018;118:451–7. https://doi.org/10.1016/J.TRIBOINT.2017.02.029.10.1016/j.triboint.2017.02.029
  28. 28. Kraker A, van Ostayen RAJ, Rixen DJ. Calculation of Stribeck curves for (water) lubricated journal bearings. Tribol Int 2007;40:459–69. https://doi.org/10.1016/j.triboint.2006.04.012.10.1016/j.triboint.2006.04.012
  29. 29. Costa L, Fillon M, Miranda AS, Claro JCP. An experimental investigation of the effect of groove location and supply pressure on the THD performance of a steadily loaded journal bearing. J Tribol 2000;122.10.1115/1.555347
  30. 30. Majumdar BC, Pai R, Hargreaves DJ. Analysis of water-lubricated journal bearings with multiple axial grooves. Proc Inst Mech Eng Part J J Eng Tribol 2004;218:135–46. https://doi.org/10.1177/135065010421800208.10.1177/135065010421800208
  31. 31. Pai RS, Pai R. Stability of four-axial and six-axial grooved water-lubricated journal bearings under dynamic load. Proc Inst Mech Eng Part J J Eng Tribol 2008;222:683–91. https://doi.org/10.1243/13506501JET356.10.1243/13506501JET356
  32. 32. Wang N, Meng Q, Wang P, Geng T, Yuan X. Experimental Research on Film Pressure Distribution of Water-Lubricated Rubber Bearing With Multiaxial Grooves. J Fluids Eng n.d.;2013.10.1115/1.4024147
  33. 33. Pai R, Hargreaves DJ, Brown R. Modelling of fluid flow in a 3-axial groove water bearing using computational fluid dynamics. 14 th Australas. Fluid Mech. Conf., 2001.
  34. 34. Wang Y-Q, Shi X-J, Zhang L-J. Experimental and numerical study on water-lubricated rubber bearings. Ind Lubr Tribol 2014;66:282–8. https://doi.org/10.1108/ILT-11-2011-0098.10.1108/ILT-11-2011-0098
  35. 35. Brito FP, Miranda AS, Claro JCP, Fillon M. Experimental comparison of the performance of a journal bearing with a single and a twin axial groove configuration. Tribol Int 2012;54:1–8. https://doi.org/10.1016/J.TRIBOINT.2012.04.026.10.1016/j.triboint.2012.04.026
  36. 36. Hirani H, Verma M. Tribological study of elastomeric bearings for marine propeller shaft system. Tribol Int 2009;42:378–90. https://doi.org/10.1016/j.triboint.2008.07.014.10.1016/j.triboint.2008.07.014
  37. 37. He Y, Zhao Z, Luo T, Lu X, Luo J. Failure analysis of journal bearing used in turboset of a power plant. Mater Des 2013;52:923–31. https://doi.org/10.1016/J.MATDES.2013.06.027.10.1016/j.matdes.2013.06.027
  38. 38. Mehdizadeh M, Khodabakhshi F. An investigation into failure analysis of interfering part of a steam turbine journal bearing. Case Stud Eng Fail Anal 2014;2:61–8. https://doi.org/10.1016/J.CSEFA.2014.04.001.10.1016/j.csefa.2014.04.001
  39. 39. Branagan L, Branagan, A. L. Survey of Damage Investigation of Babbitted Industrial Bearings. Lubricants 2015;3:91–112. https://doi.org/10.3390/lubricants3020091.10.3390/lubricants3020091
  40. 40. Akagaki T, Kato K. Ferrographic analysis of failure process in a full-scale journal bearing. Wear 1992;152:241–52. https://doi.org/10.1016/0043-1648(92)90123-P.10.1016/0043-1648(92)90123-P
  41. 41. Wang Q. Seizure failure of journal-bearing conformal contacts. Wear 1997;210:8–16. https://doi.org/10.1016/S0043-1648(97)00064-1.10.1016/S0043-1648(97)00064-1
  42. 42. Litwin W, Olszewski A. Assessment of possible application of water-lubricated sintered brass slide bearing for marine propeller shaft. POLISH Marit Res 2012;19:54–61. https://doi.org/10.2478/v10012-012-0040-4.10.2478/v10012-012-0040-4
  43. 43. Takabi J, Khonsari MM. On the thermally-induced seizure in bearings: A review. Tribol Int 2015;91:118–30. https://doi.org/10.1016/J.TRIBOINT.2015.05.030.10.1016/j.triboint.2015.05.030
  44. 44. Laukiavich CA, Braun MJ, Chandy AJ. An Investigation into the Thermal Effects on a Hydrodynamic Bearing’s Clearance. Tribol Trans 2015;58:980–1001. https://doi.org/10.1080/10402004.2015.1023408.10.1080/10402004.2015.1023408
  45. 45. Litwin W, Dymarski C. Experimental research on water-lubricated marine stern tube bearings in conditions of improper lubrication and cooling causing rapid bush wear. Tribol Int 2016;95:449–55. https://doi.org/10.1016/j.triboint.2015.12.005.10.1016/j.triboint.2015.12.005
  46. 46. Barszczewska A, Litwin W. Polymer journal bearings behaviour research under limited lubrication and cooling conditions conducted on high torque test rig. 16th EDFPPrime Work. “Behaviour J. thrust Bear. under transient Mix. Lubr. regime,” Poitiers, France: 2017, p. 24.
  47. 47. Zander N. Additive Manufacturing Materials and Technologies. STLE Tribol. Front. Conf., Chicago: 2018.
  48. 48. Barszczewska A, Piatkowska E, Litwin W. Selected Problems of Experimental Testing Marine Stern Tube Bearings. Polish Marit Res 2019;26:142–54. https://doi.org/10.2478/pomr-2019-0034.10.2478/pomr-2019-0034
  49. 49. Wodtke M, Litwin W. Water-lubricated stern tube bearing - experimental and theoretical investigations of thermal effects. Tribol Int 2021;153:106608. https://doi.org/10.1016/j.triboint.2020.106608.10.1016/j.triboint.2020.106608
DOI: https://doi.org/10.2478/pomr-2020-0069 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 91 - 102
Published on: Dec 24, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Agnieszka Barszczewska, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.