Have a personal or library account? Click to login

A Numerical and Experimental Study of Marine Hydrogen–Natural Gas–Diesel Tri–Fuel Engines

Open Access
|Dec 2020

References

  1. 1. Balcombe P., Brierley J., Lewis C., et al. (2019). How to Decarbonise International Shipping: Options for Fuels, Technologies and Policies. Energy Conversion and Management. 182(2), 72–88.10.1016/j.enconman.2018.12.080
  2. 2. Eyring V., Köhler H. W., van Aardenne J., Lauer A. (2005). Emissions from International Shipping: 1. The Last 50 Years. Journal of Geophysical Research Atmospheres.110 (D17), 1–12.
  3. 3. Lister J., Poulsen R. T., Ponte S. (2015). Orchestrating Transnational Environmental Governance in Maritime Shipping. Global Environmental Change. 34, 185–95.10.1016/j.gloenvcha.2015.06.011
  4. 4. Labeckas G., Slavinskas S., Rudnicki J., et al. (2018). The Effect of Oxygenated Diesel-N-Butanol Fuel Blends on Combustion, Performance, and Exhaust Emissions of a Turbocharged CRDI Diesel Engine. Polish Maritime Research. 1(97), 108–120.10.2478/pomr-2018-0013
  5. 5. Schinas O., Stefanakos C. N. (2014). Selecting Technologies Towards Compliance with MARPOL Annex VI: The Perspective of Operators. Transportation Research Part D-Transport and Environment. 28(28), 28-40.10.1016/j.trd.2013.12.006
  6. 6. Burel F., Taccani R., Zuliani N. (2013). Improving Sustainability of Maritime Transport Through Utilization of Liquefied Natural Gas (LNG) for Propulsion. Energy 57(57), 412–420.10.1016/j.energy.2013.05.002
  7. 7. Lu J., Zahedi A., Yang C., et al. (2013). Building the Hydrogen Economy in China: Drivers, Resources and Technologies. Renewable and Sustainable Energy Review. 23, 543–556.
  8. 8. Bicer Y., Dincer I. (2018). Clean Fuel Options with Hydrogen for Sea Transportation: A Life Cycle Approach. International Journal of Hydrogen Energy. 43(211), 1179–1193.10.1016/j.ijhydene.2017.10.157
  9. 9. Tutak W., Arkadiusz, Grab-Rogaliński K., et al. (2020). Effect of Natural Gas Enrichment with Hydrogen on Combustion Process and Emission Characteristic of a Dual Fuel Diesel Engine. International Journal of Hydrogen Energy. 1(119), 901–910.10.1016/j.ijhydene.2020.01.080
  10. 10. Ouchikh S., Lounici M. S., Tarabe, L, et al. (2019). Effect of Natural Gas Enrichment with Hydrogen on Combustion Characteristics of a Dual Fuel Diesel Engine. International Journal of Hydrogen Energy. 44(26), 13974–13987.10.1016/j.ijhydene.2019.03.179
  11. 11. Abu-Jrai A. M., Al-Muhtaseb A. H., Hasan A. O., et al. (2017). Combustion, Performance, and Selective Catalytic Reduction of NOx for a Diesel Engine Operated with Combined Tri Fuel (H-2, CH4, and Conventional Diesel). Energy. 1(119), 901–910.10.1016/j.energy.2016.11.050
  12. 12. Abu Mansor M. R., Abbood M. M., Mohamad T. I. (2017). The Influence of Varying Hydrogen-Methane-Diesel Mixture Ratio on the Combustion Characteristics and Emissions of a Direct Injection Diesel Engine. Fuel. 190(4), 281–291.10.1016/j.fuel.2016.11.010
  13. 13. Alrazen H. A., Abu Talib A. (2016). A Two-Component CFD Study of the Effects of H-2, CNG, and Diesel Blend on Combustion. International Journal of Hydrogen Energy 41(24), 10483–10495.10.1016/j.ijhydene.2015.07.097
  14. 14. Talibi M., Balachandran R., Ladommatos N. (2017). Influence of Combusting Methane-Hydrogen Mixtures on Compression Ignition Engine Exhaust Emissions snd In-Cylinder Gas Composition. International Journal of Hydrogen Energy. 42(4), 2381–2396.10.1016/j.ijhydene.2016.10.049
  15. 15. Tangoz S., Akansu S. O., Kahraman N., et al. (2015). Effects of Compression Ratio on Performance and Emissions of a Modified Diesel Engine Fueled by HCNG. International Journal of Hydrogen Energy. 40(44), 15374–15380.10.1016/j.ijhydene.2015.02.058
  16. 16. Mahmood H. A., Adam N. M., Sahari B. B., et al. (2017). New Design of a CNG-H-2-AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study. Energies. 10(9), 1373.10.3390/en10091373
  17. 17. Wang H., Yao M., Reitz R. D. (2013). Development of a Reduced Primary Reference Fuel Mechanism for Internal Combustion Engine Combustion Simulations. Energy Fuels. 27(12), 7843–7853.10.1021/ef401992e
  18. 18. Maghbouli A., Saray R. K., Shafee S., Ghafouri J. (2013). Numerical Study of Combustion and Emission Characteristics of Dual-Fuel Engines Using 3D-CFD Models Coupled with Chemical Kinetics. Fuel 106, 98–105.10.1016/j.fuel.2012.10.055
  19. 19. Han Z. Y., Reitz R. D. (1997). A Temperature Wall Function Formulation for Variable-Density Turbulent Flows with Application to Engine Convective Heat Transfer Modeling. International Journal of Heat & Mass Transfer. 40(3), 613–625.10.1016/0017-9310(96)00117-2
  20. 20. Han Z., Reitz R. D. (1995). Turbulence Modeling of Internal Combustion Engines Using RNG K-Ε Models. Combustion Science and Technology. 106, 267–95.10.1080/00102209508907782
  21. 21. Butler T. D., Cloutman L. D., Dukowicz J. K., Ramshaw D.J. (1981). Multidimensional numerical simulation of reactive flow in internal combustion engines. Progress in Energy & Combustion ence. 7(4), 293–315.10.1016/0360-1285(81)90003-4
  22. 22. Beale J. C., Reitz R. D. (1999). Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model. Atomization and Sprays. 9(6), 623–650.10.1615/AtomizSpr.v9.i6.40
  23. 23. Feng S. (2017). Numerical Study of the Performance and Emission of a Diesel-Syngas Dual Fuel Engine. Mathematical Problems in Engineering.10, 1–12.10.1155/2017/6825079
  24. 24. Colket M. B., Spadaccini L. J. (2012). Scramjet Fuels Autoignition Study. Journal of Propulsion and Power. 17(2), 315–323.10.2514/2.5744
  25. 25. Verhelst S., Joen C. T., Coillie J. V., et al. (2011). A Correlation for the Laminar Burning Velocity for Use in Hydrogen Spark Ignition Engine Simulation. International Journal of Hydrogen Energy. 36(1), 957–974.10.1016/j.ijhydene.2010.10.020
  26. 26. D’Andrea T., Henshaw P. F., Ting S. K. (2004). The Addition of Hydrogen to a Gasoline-Fuelled SI Engine. International Journal of Hydrogen Energy. 29(14), 1541–1552.10.1016/j.ijhydene.2004.02.002
  27. 27. Li W., Liu Z., Wang Z. (2016). Experimental and Theoretical Analysis of the Combustion Process at Low Loads of a Diesel Natural Gas Dual-Fuel Engine. Energy. 94, 728–741.10.1016/j.energy.2015.11.052
DOI: https://doi.org/10.2478/pomr-2020-0068 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 80 - 90
Published on: Dec 24, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Rui Zhao, Leping Xu, Xiangwen Su, Shiquan Feng, Changxiong Li, Qinming Tan, Zhongcheng Wang, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.