Have a personal or library account? Click to login

Preliminary Analysis of the Use of Solid Biofuels in a Ship’s Power System

Open Access
|Dec 2020

References

  1. 1. International Chamber of Shipping, ‘Shipping World Trade and the Reduction of CO2 Emissions’. [Online]. Available: https://www.ics-shipping.org/docs/default-source/resources/environmental-protection/shipsandco2-cop21.pdf?sfvrsn=16. [Accessed March 3, 2017].
  2. 2. International Maritime Organization, ‘Resolution MEPC.213(63) 2012: Guidelines for the Development of a Ship Energy Efficiency Management Plan (SEEMP)’, 2017. [Online]. Available: http://www.imo.org/en/KnowledgeCentre/IndexofIMOResolutions/Marine-Environment-Protection-Committee-%28MEPC%29/Documents/MEPC.213%2863%29.pdf. [Accessed March 3, 2017].
  3. 3. International Maritime Organization, ‘Resolution MEPC.212(63): Guidelines on the Method of Calculation of the Attained Energy Efficiency Design Index (EDI) for New Ships’, 2012. [Online]. Available: http://www.imo.org/en/KnowledgeCentre/IndexofIMOResolutions/Marine-Environment-Protection-Committee-%28MEPC%29/Documents/MEPC.212%2863%29.pdf. [Accessed March 3, 2012].
  4. 4. J.F. Helfre and P.A. Cauto Boot, ‘Emission reduction in the shipping: Regulations, exposure and solutions’, Sustainalytics, vol. 7, pp. 1-37,2013.
  5. 5. International Maritime Organization, ‘Resolution MEPC.vol. 176(58) 2010; 1-45. (Revised MARPOL Annex VI)’, 2010. [Online]. Available: http://www.imo.org/en/KnowledgeCentre/IndexofIMOResolutions/Marine-Environment-Protection-Committee-(MEPC)/Documents/MEPC.176(58).pdf; 2017. [Accessed March 3, 2017].
  6. 6. M.E. Mondejar et al., ‘Quasi-steady state simulation of an organic Rankine cycle for waste heat recovery in a passenger vessel’, Applied Energy, vol. 185, no. 2, pp. 1324-1335, 2017.
  7. 7. D. Senatore, Buono, E. Frosina et al., ‘Performances and emissions of a 2-stroke diesel engine fueled with biofuel blends’, in Proc. of the 69th Conf. of the Italian-Thermal-Engineering-Association (ATI), Milan, Italy, 10-13 September 2014, ATI 2014 Book Series: Energy Procedia vol. 81, pp. 918-929, 2015.10.1016/j.egypro.2015.12.147
  8. 8. G. Labeckas, S. Slavinskas, J. Rudnicki, and R. Zadrąg, ‘The effect of oxygenated diesel-n-butanol fuel blends on combustion, performance, and exhaust emissions of a turbocharged CRDI diesel engine’, Polish Maritime Research, vol. 25, no. 1, 2018, doi:10.2478/pomr-2018-0013.10.2478/pomr-2018-0013
  9. 9. A. Armelini et al., ‘Evaluation of gas turbines as alternative energy production system for a large cruise ship to meet new maritime regulations’, Applied Energy vol. 211, no. 2, pp. 306-317, 2018.10.1016/j.apenergy.2017.11.057
  10. 10. J. Sarnecki, T. Białecki, B. Gawron, J. Głąb, J. Kamiński, A. Kulczycki and K. Romanyk, ‘Thermal degradation process of semi-synthetic fuels for gas turbine engines in non-aeronautical applications’, Polish Maritime Research, vol. 26, no. 1, Apr. 2019, doi:10.2478/pomr-2019-0008.10.2478/pomr-2019-0008
  11. 11. M. Morsy et al., ‘Utilization of alternative marine fuels for gas turbine power plant onboard ships’, Int. J. Naval Archit. Ocean Eng., vol. 5, no. 3, pp. 21-32, 2013.10.2478/IJNAOE-2013-0115
  12. 12. W. M. Lewandowski, ‘Pro-ecological renewable energy sources’ (in Polish), Warszawa: WNT, 2006.
  13. 13. T. Chmielniak, ‘Energy technologies’ (in Polish), Warszawa: WNT, 2008.
  14. 14. M. Jakubiak, W. Kordylewski, ‘Biomass torrefaction’ (in Polish), Archiwum Spalania, vol. 10, no.1-2, pp.11-25, 2010.
  15. 15. D. Thrän et al., ‘Moving torrefaction towards market introduction – Technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project’, Biomass and Bioenergy, vol. 89, pp. 184-200, 2016.10.1016/j.biombioe.2016.03.004
  16. 16. P. McNamee et al., ‘An assessment of the torrefaction of North American pine and life cycle greenhouse gas emissions’, Energy Conversion and Management, vol. 113, pp. 177-188, 2016.10.1016/j.enconman.2016.01.006
  17. 17. A. Poskart, S. Szwaja and D. Musiał, ‘Virginia mallow char as a fuel for central heating coal boilers’ (in Polish), Rynek Energii, vol. 127, no. 6, pp. 104-108, 2016.
  18. 18. W. Zeńczak, ‘The concept of ship’s power plant arrangement involving biomass fired boiler’, Journal of Polish CIMAC’, vol. 5, no. 1, pp. 205-212, 2010.
  19. 19. ‘Green Power. Maximum benefit from liquid biofuels’, [Online]. Available: http://powerplants.man.eu/docs/librariesprovider7/brochures/green-power-maxiumum-benefit-from-liquid-biofuel.pdf. [Accessed: May 15, 2016].
  20. 20. International Maritime Organization, ‘Methanol as marine fuel: Environmental benefits, technology readiness, and economic feasibility. Report No.: 2015-1197, Rev.2’, DNVGL, 2016.
  21. 21. A. Adamkiewicz and W. Zeńczak, ‘Methanol as an ecological fuel for sea-going vessels’, in Proc. of the XXIII Energie Symposium. Nutzung regenerativer Energiequellen und Wasserstofftechnik, T. Luschtinetz, J. Lehman, Eds., Stralsund: Fachhochschule, 2016, pp. 170-174.
  22. 22. J. T. Schroppe and R. L. Gamble, ‘A coal fired fluidizedbed steam generator for marine applications’, SNAME Transactions, vol. 89, pp. 379-395, 1981.
  23. 23. S. Ikeda, S. Ito, and T. Someya, ‘An experimental marine fluidized-bed boiler plant’, Marine Engineers Rev., vol. 10, pp. 15-17, 1983.
  24. 24. W. Zeńczak, ‘Investigation of fluidized bed of the physical model of the marine fluidized bed boiler’, Journal of Polish CIMAC, vol. 3, no. 1, pp. 183-190, 2008.
  25. 25. W. Zeńczak, ‘The research of the influence of the cylindrical heating surface location on the local heat transfer coefficients in fluidised bed of the marine fluidised bed boiler’, Journal of Polish CIMAC, vol. 4, no. 1, pp. 161-16, 2009.
  26. 26. A. Adamkiewicz and W. Zeńczak, ‘Application of the similarity theory in model investigation of a ship’s fluidized bed boiler’, Scientific Journals of the Maritime University of Szczecin, vol. 23, no. 95, pp. 5-9, 2010.
  27. 27. A. Adamkiewicz and W. Zeńczak, ‘Method of estimation of heat transfer coefficient between the fluidized bed and the surface immersed in it on an experimental simulation stand of a ship boiler’, Scientific Journals of the Maritime University of Szczecin, vol. 21, no. 93, pp. 12-19, 2010.
  28. 28. W. Stelle, ‘Guidline: storge and handling of wood pellets: Report’, Danish Technological Institute, Aarhus, Denmark, 2012. [Online]. Available: https://www.teknologisk.dk/_/media/52682_RK%20report%20storage%20and%20handling%20of%20pellets.pdf. [Accessed 17 Sept. 17, 2019].
  29. 29. W. Stelle, ‘Best practice guideline – Storage and handling of torrified biomass: Report’, Danish Technological Institute, Aarhus, Denmark, 2015. [Online]. Available: https://www.teknologisk.dk/_/media/64590_Storage%20and%20Handling%20of%20torrefied%20biomass.pdf. [Accessed Sept. 17, 2019].
  30. 30. W. Węgrzyn, ‘Explosion hazard in technological processes of transport, storage and combustion of biomass’ (in Polish), Prace Naukowe Akademii im. Jana Długosza w Częstochowie. Seria: Edukacja Techniczna i Informatyczna, vol. VI, pp. 9-20, 2011.
  31. 31. A. Ickowicz, ‘Research on selected properties of torrefiers’ (in Polish), Master’s thesis, Politechnika Wrocławska, Wrocław, Poland, 2012.
  32. 32. K. Jaap, A. Lönnermark, H. Persson, I. Larsson, P. Blomqvist, M. Arshadi et al., ‘Health and safety aspects of solid biomass storage. Transportation and feedings: Report’, IEA Bioenergy, Enschede, https://www.ieabioenergy.com/wp-content/uploads/2013/10/Health-and-Safety-Aspects-of-Solid-Biomass-Storage-Transportation-and-Feeding.pdf; 2013. [Accessed Nov. 20, 2019].
  33. 33. W. Węgrzyn, ‘Fire protection during transport, storage and combustion of biomass’ (in Polish), Rynek Instalacyjny, vol. 6, 2009, http://www.rynekinstalacyjny.pl/artykul/id1003,ochrona-przeciwpozarowa-przy-transporcieskladowaniu-i-spalaniu-biomasy?print=1. [Accessed November 3, 2010].
  34. 34. International Maritime Organization, ‘MSC 95/22/Add. 2., Annex 3., Resolution MSC.393(95), Amendments to the International Maritime Solid Bulk Cargoes (IMSBC) Code’, Report of the Maritime Safety Committee on its Ninety-Fifth Session, International Maritime Organization, 2015. [Online]. Available: http://www.syndarma.org.br/upload/MSC%2095-22-Add.2%20-%20Relat__rio.pdf.2015. [Accessed March 17, 2016].
  35. 35. ‘Cracovia - this will be the name of the new ferry in the PŻB fleet’ (in Polish), 2017. [Online]. Available: http://www.gospodarkamorska.pl/Porty,Transport/cracovia-–-tak-bedzie-nazywal-sie-nowy-prom-we-flocie-pzb.html. [Accessed April 28, 2017].
  36. 36. ‘What will the new PŻB ferry be like? - the contract was signed, not much is known’ (in Polish), 2017. [Online]. Available: http://www.portalmorski.pl/zegluga/promyroro/46828-jaki-bedzie-nowy-prom-pzb-mozliwe-zedowiemy-sie-w-srode. [Accessed April 5, 2017].
  37. 37. M. Giernalczyk, Z. Górski, Marine power plants, Part I: Fundamentals of propulsion and marine energy (in Polish), Gdynia: Wydawnictwo Akademii Morskiej, 2011.
  38. 38. J. Piskorz-Nałęcki, ‘Universal ferry for the Świnoujście Ystad line powered by steam piston engines and coal-fired boilers’ (in Polish), Budownictwo Okrętowe, vol. 9, pp. 368-371, 1987.
  39. 39. ‘First big ferry fueled by natural gas’, HANSA International Maritime Journal, vol. 150, no. 6, pp. 36-43, 2013.
  40. 40. ‘World bunker prices’, 2020. [Online]. Available: https://shipandbunker.com/prices/. [Accessed July 13, 2020].
  41. 41. ‘Mig 100 Ltd’, 2020. [Online]. Available: https://mig100.co.uk/product/bulk-torrefied-pellets/. [Accessed July 13, 2020].
DOI: https://doi.org/10.2478/pomr-2020-0067 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 67 - 79
Published on: Dec 24, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Wojciech Zeńczak, Agata Krystosik Gromadzińska, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.