Have a personal or library account? Click to login

Feasibility Study of Rans in Predicting Propeller Cavitation in Behind-Hull Conditions

Open Access
|Dec 2020

References

  1. 1. F. A. Pereira, F. S. Felice, and F. Salvatore, “Propeller cavitation in non-uniform flow and correlation with the near pressure field,” Journal of Marine Science and Engineering, vol. 4, pp. 1-21, 2016.10.3390/jmse4040070
  2. 2. K., Shiraishi, Y. Sawada, D. Arakawa, and K. Hoshino, “Experimental estimation for pressure fluctuation on ship stern induced by cavitating propeller using cavity shape measurements,” in Proceedings of the 10th International Symposium on Cavitation - CAV2018, Baltimore, USA, 2018.
  3. 3. A. Asnaghi, U. Svennberg, and R. E. Bensow, “Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers,” Applied Ocean Research, vol. 79, pp. 197-214, 2018.10.1016/j.apor.2018.07.010
  4. 4. F. Salvatore, H. Streckwall, and T. V. Terwisga, “Propeller cavitation modelling by CFD - results from the VIRTUE 2008 Rome Workshop,” in Proceedings of the First International Symposium on Marine Propulsors Smp’09, Trondheim, Norway, 2009.
  5. 5. G. Vaz, D. Hally, T. Huuva, N. Bulten, et al., “Cavitating flow calculations for the E779A propeller in open water and behind conditions: code comparison and solution validation,” in Proceedings of the 4th International Symposium on Marine Propulsors Smp’15, Austin, Texas, USA, 2015.
  6. 6. N. Yilmaz, M. Atlar, P. A. Fitzsimmons, and N. Sasaki, “Computational fluid dynamic investigations of propeller cavitation in the presence of a rudder,” in Proceedings of the 3rd International Symposium on Naval Architecture and Maritime, Istanbul, Turkey, 2018.
  7. 7. L. Wang, C. Guo, P. Xu, and Y. Su, “Analysis of the performance of an oscillating propeller in cavitating flow,” Ocean Engineering, vol. 164, pp. 23-39, 2018.10.1016/j.oceaneng.2018.06.036
  8. 8. N. Sakamoto, and H. Kamiirisa, H, “Prediction of near field propeller cavitation noise by viscous CFD with semiempirical approach and its validation in model and full scale,” Ocean Engineering, vol. 168, pp. 41-59, 2018.10.1016/j.oceaneng.2018.08.061
  9. 9. S. Gaggero, G. Tani1, D. Villa, M. Viviani, F. Miglianti, P. Ausonio, P. Travi, G. Bizzarri, and F. Serra, “Propeller geometry optimization for pressure pulses reduction: an analysis of the influence of the rake distribution,” in Proceedings of the Fifth International Symposium on Marine Propulsors smp’17, Espoo, Finland, 2017.
  10. 10. J. Hur, H. Kim, and H. Lee, “Numerical study on the effect of turbulence and cavitation model for propeller induced hull pressure fluctuation,” in Proceedings of the 10th International Symposium on Cavitation - CAV2018 Baltimore, Maryland, USA, 2018, pp. 834-837.
  11. 11. S. Ando, K. Kimura, K. Segawa, and K. Yamamoto, “Study on the hybrid method of CFD and bubble dynamics for marine propeller cavitation noise prediction,” Proceedings of the 10th International Symposium on Cavitation - CAV2018 Baltimore, Maryland, USA, 2018, pp. 958-963.10.1115/1.861851_ch183
  12. 12. C. Zheng, D. Liu, and H. Huang, “The numerical prediction and analysis of propeller cavitation benchmark tests of YUPENG ship model,” Journal of Marine Science and Engineering, vol. 7, p. 387, 2019.10.3390/jmse7110387
  13. 13. O. Usta, and E. Korkut, “A study for cavitating flow analysis using DES model,” Ocean Engineering, vol. 160, pp. 397-411, 2018.10.1016/j.oceaneng.2018.04.064
  14. 14. H. Y. Cheng, X. R. Bai, X. P. Long, B. Ji, X. X. Peng, and M. Farhat, “Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence,” Applied Mathematical Modeling, vol. 77, pp. 788-809, 2020.10.1016/j.apm.2019.08.005
  15. 15. S. Gaggero, G. Tani, M. Viviani, and F. Conti, “A study on the numerical prediction of propellers cavitating tip vortex,” Ocean Engineering, vol. 92, pp. 137-161, 2014.10.1016/j.oceaneng.2014.09.042
  16. 16. Y. X. Zhang, X. P. Wu, Z. Y. Zhou, X. K. Cheng, and Y. L. Li, “A numerical study on the interaction between forward and aft propellers of hybrid CRP pod propulsion systems,” Ocean Engineering, vol. 186, p. 106084, 2019.10.1016/j.oceaneng.2019.05.066
  17. 17. K. W. Shin, and P. Andersen, “CFD analysis of propeller tip vortex cavitation in ship wake fields,” in Proceedings of the 10th International Symposium on Cavitation - CAV2018, Baltimore, USA, 2018.
  18. 18. V. Viitanen, T. Siikomen, and A. Sanchez-Caja, “Cavitation on model- and full-scale marine propellers: steady and transient viscous flow simulations at different Reynolds numbers,” Journal of Marine Science and Engineering, vol. 8, p. 141, 2020.10.3390/jmse8020141
  19. 19. A. Asnaghi, U. Svennberg, and R. E. Bensow, “Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers,” Applied Ocean Research, vol. 79, pp. 197-214, 2018.10.1016/j.apor.2018.07.010
  20. 20. P. Perali, T. Lloyd, and G. Vaz, “Comparison of uRANS and BEM-BEM for propeller pressure pulse prediction: E779A propeller in a cavitation tunnel,” in Proceedings of the 19th Numerical Towing Tank Symposium, Nantes, France, 2016.
  21. 21. International Towing Tank Conference (ITTC), “The specialist committee on computational fluid dynamics— final report and recommendations to the 26th ITTC,” in 26th ITTC, vol. 2, pp. 337-377, 2011.
  22. 22. Y. X. Zhang, K. Chen, and D. P. Jiang, “CFD analysis of the lateral loads of a propeller in oblique flow,” Ocean Engineering, vol. 202, p. 107153, 2020.10.1016/j.oceaneng.2020.107153
DOI: https://doi.org/10.2478/pomr-2020-0063 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 26 - 35
Published on: Dec 24, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Yuxin Zhang, Xiao-ping Wu, Ming-yan Lai, Guo-ping Zhou, Jie Zhang, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.