Have a personal or library account? Click to login
Effect of Rotational Speed of a Self-Aspirating Mixer on Oxygen Saturation in Water Cover

Effect of Rotational Speed of a Self-Aspirating Mixer on Oxygen Saturation in Water

Open Access
|Sep 2020

References

  1. 1. Gamo, T. (2011): Dissolved oxygen in the bottom water of the Sea of Japan as a sensitive alarm for global climate change. TrAC Trends in Analytical Chemistry, 30(8), 1308-1319.10.1016/j.trac.2011.06.005
  2. 2. Topcu, H. D., Brockmann, U. H. (2015): Seasonal oxygen depletion in the North Sea, a review. Marine Pollution Bulletin, 99(1-2), 5-27.10.1016/j.marpolbul.2015.06.02126234616
  3. 3. Stigebrandt, A., Kalén, O. (2013): Improving oxygen conditions in the deeper parts of Bornholm Sea by pumped injection of winter water. Ambio, 42(5), 587-595.10.1007/s13280-012-0356-4369832523161366
  4. 4. Mostefa, G., Ahmed, K. (2012): Treatment of water supplies by the technique of dynamic aeration. Procedia Engineering, 33, 209-214.10.1016/j.proeng.2012.01.1195
  5. 5. Stigebrandt, A., Liljebladh, B., De Brabandere, L., Forth, M., Granmo, Å., Hall, P., ... Norén, F. (2015): An experiment with forced oxygenation of the deepwater of the anoxic By Fjord, Western Sweden. Ambio, 44(1), 42-54.10.1007/s13280-014-0524-9429336124789509
  6. 6. Grochowska, J., Gawronska, H. (2004): Restoration effectiveness of a degraded lake using multi-year artificial aeration. Polish Journal of Environmental Studies, 13(6).
  7. 7. Wang, J., Liu, X. D., Lu, J. (2012): Urban river pollution control and remediation. Procedia Environmental Sciences, 13, 1856-1862.10.1016/j.proenv.2012.01.179
  8. 8. Anielak, A. M. (2015): Wysokoefektywne metody oczyszczania wody.
  9. 9. Salgot, M., Folch, M. (2018): Wastewater treatment and water reuse. Current Opinion in Environmental Science Health.10.1016/j.coesh.2018.03.005
  10. 10. Ribeiro, A. R., Nunes, O. C., Pereira, M. F., Silva, A. M. (2015): An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environment International, 75, 33-51.10.1016/j.envint.2014.10.02725461413
  11. 11. Matilainen, A., Sillanpää, M. (2010): Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere, 80(4), 351-365.10.1016/j.chemosphere.2010.04.06720494399
  12. 12. Kanakaraju, D., Glass, B. D., Oelgemöller, M. (2018): Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. Journal of Environmental Management, 219, 189-207.10.1016/j.jenvman.2018.04.10329747102
  13. 13. Dewil, R., Mantzavinos, D., Poulios, I., Rodrigo, M. A. (2017): New perspectives for advanced oxidation processes. Journal of Environmental Management, 195, 93-99.10.1016/j.jenvman.2017.04.01028456288
  14. 14. Oller, I., Malato, S., Sánchez-Pérez, J. (2011): Combination of advanced oxidation processes and biological treatments for wastewater decontamination—A review. Science of the Total Environment, 409(20), 4141-4166.10.1016/j.scitotenv.2010.08.06120956012
  15. 15. Särkkä, H., Bhatnagar, A., Sillanpää, M. (2015): Recent developments of electro-oxidation in water treatment—A review. Journal of Electroanalytical Chemistry, 754, 46-56.10.1016/j.jelechem.2015.06.016
  16. 16. Kumar, A., Nidheesh, P. V., Kumar, M. S. (2018): Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes. Chemosphere, 205, 587-593.10.1016/j.chemosphere.2018.04.14129715673
  17. 17. Roksela, M., Heidrich, Z. (2017): Energochłonność napowietrzania w procesie osadu czynnego. Gaz, Woda i Technika Sanitarna.10.15199/17.2017.9.5
  18. 18. Asadi, A., Verma, A., Yang, K., Mejabi, B. (2017): Wastewater treatment aeration process optimization: A data mining approach. Journal of Environmental Management, 203, 630-639.10.1016/j.jenvman.2016.07.04727460213
  19. 19. Daskiran, C., Riglin, J., Schleicher, W. C., Oztekin, A. (2018): Computational study of aeration for wastewater treatment via ventilated pump-turbine. International Journal of Heat and Fluid Flow, 69, 43-54.10.1016/j.ijheatfluidflow.2017.11.006
  20. 20. Kalenik, M., Wichowski, P., Morawski, D., Chalecki, M. (2017): Kinetics of water oxygenation in pipe aerator. Infrastruktura i Ekologia Terenów Wiejskich.
  21. 21. Marsidi, N., Hasan, H. A., Abdullah, S. R. S. (2018): A review of biological aerated filters for iron and manganese ions removal in water treatment. Journal of Water Process Engineering, 23, 1-12.10.1016/j.jwpe.2018.01.010
  22. 22. Bao, T., Chen, T., Wille, M. L., Chen, D., Bian, J., Qing, C.,... Frost, R. L. (2016): Advanced wastewater treatment with autoclaved aerated concrete particles in biological aerated filters. Journal of Water Process Engineering, 9, 188-194.10.1016/j.jwpe.2015.11.006
  23. 23. Kujawiak, S., Gawrońska, A., Matz, R., Makowska, M. (2017): Efektywność procesu napowietrzania w reaktorach barbotażowych ze złożem ruchomym. CzasopismoTechniczne, 2017 (Volume 3).10.4467/2353737XCT.17.039.6350
  24. 24. Boog, J., Nivala, J., Aubron, T., Mothes, S., van Afferden, M., Müller, R. A. (2017): Resilience of carbon and nitrogen removal due to aeration interruption in aerated treatment wetlands. Science of The Total Environment, 621, 960-969.10.1016/j.scitotenv.2017.10.13129128122
  25. 25. Freeman, A. I., Surridge, B. W., Matthews, M., Stewart, M., Haygarth, P. M. (2018): New approaches to enhance pollutant removal in artificially aerated wastewater treatment systems. Science of the Total Environment, 627, 1182-1194.10.1016/j.scitotenv.2018.01.26130857083
  26. 26. Shukla, B. K., Goel, A. (2018): Study on oxygen transfer by solid jet aerator with multiple openings. Engineering Science and Technology: An International Journal, 21(2), 255-260.10.1016/j.jestch.2018.03.007
  27. 27. Shukla, B. K., Khan, A., Saikiran, G., Sriram, M. A. (2019) Comparative study on effect of variation in opening shape on oxygenation performance of surface jet aerators used in water and wastewater treatment. Journal of Green Engineering, 9(3), 427-440.
  28. 28. Ghotli, R. A., Shafeeyan, M. S., Abbasi, M. R., Raman, A. A. A., Ibrahim, S. (2020): Macromixing study for various designs of impellers in a stirred vessel. Chemical Engineering and Processing - Process Intensification, 148, 107794.10.1016/j.cep.2019.107794
  29. 29. Adel, M., Shaalan, M. R., Kamal, R. M., El Monayeri, D. S. (2019): A comparative study of impeller aerators configurations. Alexandria Engineering Journal, 58(4), 1431-1438.10.1016/j.aej.2019.11.014
  30. 30. Du, Y., Chen, F., Zhou, L., Qiu, T., Sun, J. (2020): Effects of different layouts of fine-pore aeration tubes on sewage collection and aeration in rectangular water tanks. Aquacultural Engineering, 102060.10.1016/j.aquaeng.2020.102060
  31. 31. Jegatheeswaran, S., Kazemzadeh, A., Ein-Mozaffari, F. (2019): Enhanced aeration efficiency in non-Newtonian fluids using coaxial mixers: High-solidity ratio central impeller with an anchor. Chemical Engineering Journal, 378, 122081.10.1016/j.cej.2019.122081
  32. 32. Rzyski, E., Stelmach, J. (2005): Napowietrzanie z użyciem mieszadła ze zwiniętymi śrubowo łopatkami wstęgowymi. Inżynieria i Aparatura Chemiczna, (5s), 58-62.
  33. 33. Stelmach, J. (2006): Efektywność mieszadeł turbinowotarczowych z kierownicą. Przemysł Chemiczny, 85(8-9), 1150-1153.
  34. 34. Heim, A., Stelmach, J. (2009): Porównanie efektywności wnikania masy dla mieszadeł z napowietrzaniem bełkotkowym. Rocznik Ochrona Środowiska, 11, 207-219.
  35. 35. Rieger, F., Jirout, T., Stelmach, J. (2017): Wpływ modyfikacji mieszadła z łamanymi łopatkami na efektywność mieszania. Przemysł Chemiczny, 96.10.15199/62.2017.11.29
  36. 36. Suschka J., Zieliński J. (1979): Grajcar E. Urządzenia do natleniania ścieków. Warszawa, Wydawnictwo Arkady.
  37. 37. Burgan, H.I., Aksoy, H. (2020): Monthly flow duration curve model for ungauged river basins. Water, 12, 338.10.3390/w12020338
DOI: https://doi.org/10.2478/pomr-2020-0060 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 182 - 188
Published on: Sep 29, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Andrzej Wróblewski, Aldona Skotnicka-Siepsiak, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.