Have a personal or library account? Click to login
State of Charge Estimation Method for Lithium-Ion Batteries in All-Electric Ships Based on LSTM Neural Network Cover

State of Charge Estimation Method for Lithium-Ion Batteries in All-Electric Ships Based on LSTM Neural Network

By: Pan Geng,  Xiaoyan Xu and  Tomasz Tarasiuk  
Open Access
|Sep 2020

References

  1. 1. Alnes O., Eriksen S., Vartdal B. (2017): Battery-Powered Ships: A Class Society Perspective. IEEE Electrification Mag., 5(3), 10–21.10.1109/MELE.2017.2718823
  2. 2. Guidi G., Suul J., Jenset F., Sorfonn I. (2017): Wireless Charging for Ships: High-Power Inductive Charging for Battery Electric and Plug-In Hybrid Vessels. IEEE Electrification. Mag., 5(3),, 22–32.10.1109/MELE.2017.2718829
  3. 3. McCoy T. (2015): Electric ships past, present, and future [technology leaders]. IEEE Electrification Mag., 3(2), 4–11.10.1109/MELE.2015.2414291
  4. 4. Skjong E., Volden R., Rødskar E., Molinas M., Johansen T., Cunningham J. (2016): Past, Present, and Future Challenges of the Marine Vessel’s Electrical Power System. IEEE Transactions on Transportation Electrification, 2(4), 522–537.10.1109/TTE.2016.2552720
  5. 5. Mofor L., Nuttall P., Newell A. (2015): Renewable energy options for shipping. Int. Renewable Energy Agency, Abu Dhabi, UAE, Tech. Rep.
  6. 6. Wartsila. Wireless Charging (https://www.wartsila.com/marine/build/power-systems/shore-connections/wireless-charging), last accessed 11.07.2019.
  7. 7. Abkenar A., Nazari A, Jayasinghe S., Kapoor A., Negnevitsky M. (2017): Fuel Cell Power Management Using Genetic Expression Programming in All-Electric Ships. IEEE Transactions on Energy Conversion, 3(2), 779‒787.10.1109/TEC.2017.2693275
  8. 8. Boveri A., Silvestro F., Molinas M. Skjong E. (2019); Optimal Sizing of Energy Storage Systems for Shipboard Applications. IEEE Transactions on Energy Conversion, 34 (2), 801–811.10.1109/TEC.2018.2882147
  9. 9. Fei Y., Xie C., Tang Z., Zeng C., Quan S. (2017): State-of-Charge Estimation Based on Square Root Unscented Kalman Filter Algorithm for Li-ion Batteries. Proceedings of the CSEE, 37(15), 4514‒4520.
  10. 10. Yu H., Lu R., Zhu C., Ma R. (2012): State of Charge Estimation Calibration for Ni-MH Battery Based on Ampere-Hour Method. Transactions of China Electrotechnical Society, 27(6), 12‒18.
  11. 11. Weng C., Sun J., Peng H. (2014): A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring. Journal of Power Sources, 258(14), 228‒237.10.1016/j.jpowsour.2014.02.026
  12. 12. Sun D., Chen X. (2015): Charge State Estimation of Li-ion Batteries Based on Discrete-time Sliding Mode Observers. Proceedings of the CSEE, 35(1), 185‒191.
  13. 13. Waag W., Fleischer C., Viejo B., et al. (2014): Critical review of the methods for monitoring of lithium-ion battery in electric and hybrid vehicles. Journal of Power Sources, 258, 321‒339.10.1016/j.jpowsour.2014.02.064
  14. 14. Meng J., Luo G., Gao G. (2016): Lithium Polymer Battery State-of-Charge Estimation Based on Adaptive Unscented Kalman Filter and Support Vector Machine. IEEE Transactions on Power Electronics, 31(3), 2226‒2238.10.1109/TPEL.2015.2439578
  15. 15. Álvarez Antón J., García Nieto P., de Cos Juez, F., et al. (2013): Battery state-of-charge estimator using the SVM technique. Applied Mathematical Modeling, 37(9), 6244‒6253.10.1016/j.apm.2013.01.024
  16. 16. Du J., Liu Z., Wang Y. (2014): State of charge estimation for Li-ion battery based on model from extreme learning machine. Control Engineering Practice, 26, 11‒19.10.1016/j.conengprac.2013.12.014
  17. 17. Chang W. (2013): Estimation of the state of charge for a LFP battery using a hybrid method that combines a RBF neural network, an OLS algorithm and AGA. International Journal of Electrical Power and Energy Systems, 53, 603‒611.10.1016/j.ijepes.2013.05.038
  18. 18. Chaoui H., Ibe-Ekeocha C. C. (2016): State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks. IEEE Transactions on Vehicular Technology, 66(10), 8773‒8783.
  19. 19. El Mejdoubi A., Oukaour A., Chaoui H., et al. (2016): State-of-Charge and State-of-Health Lithium-Ion Batteries’ Diagnosis According to Surface Temperature Variation. IEEE Transactions on Industrial Electronics, 63(4), 2391‒2402.10.1109/TIE.2015.2509916
  20. 20. Chen L., Wang Z., Lü Z., et al. (2018): A Novel State-of-charge Estimation Method of Lithium-ion Batteries Combining the Grey Model and Genetic Algorithms. IEEE Transactions on Power Electronics, 33(10), 8797‒8807.10.1109/TPEL.2017.2782721
  21. 21. Liu Y., Tan G., He X. (2017): Optimized Battery Model Based Adaptive Sigma Kalman Filter for State of Charge Estimation. Transactions of China Electrotechnical Society, 32(2), 108‒118.10.1063/1.4992815
  22. 22. Pan H., Lu Z., Li J., Chen L. (2017): Estimation of Lithium-Ion Battery State of Charge Based on Grey Prediction Model-Extended Kalman Filter. Transactions of China Electrotechnical Society, 32(21), 1‒8.
  23. 23. Aung H., Soon Low K., Ting Goh S. (2015): State-of-charge Estimation of Lithium-Ion Battery Using Square Root Spherical Unscented Kalman Filter (Sqrt-UKFST) in Nanosatellite. IEEE Transactions on Power Electronics, 30(9), 4774‒4783.10.1109/TPEL.2014.2361755
  24. 24. Sheng H., Xiao J., Wang P. (2017): Lithium Iron Phosphate Battery Electric Vehicle State-of-Charge Estimation Based on Evolutionary Gaussian Mixture Regression. IEEE Transactions on Industrial Electronics, 64(1), 544‒551.10.1109/TIE.2016.2606588
  25. 25. Anton J., Nieto P., Viejo C., et al. (2013): Support vector machines used to estimate the battery state of charge. IEEE Transactions on Power Electronics, 28(12), 5919‒5926.10.1109/TPEL.2013.2243918
  26. 26. Wang Q., Sun Y., Ni F., Luo Y. (2016): A New Method of Battery State of Charge Prediction in the Hybrid Electric Vehicle. Transactions of China Electrotechnical Society, 31(9), 189‒196.
  27. 27. Yang F., Song X., Xu F., Tsui K. (2019): State-of-Charge Estimation of Lithium-Ion Batteries via Long Short-Term Memory Network. IEEE Access, 7, 53792–53799.10.1109/ACCESS.2019.2912803
  28. 28. Han L., Yu C., Xiao K., Zhao X. (2019): A New Method of Mixed Gas Identification Based on a Convolutional Neural Network for Time Series Classification. Sensors, 19(9), 1‒23.10.3390/s19091960653907931027348
  29. 29. Shrestha A., Mahmood A. (2019): Review of Deep Learning Algorithms and Architectures. IEEE Access, 7, 53040‒53065.10.1109/ACCESS.2019.2912200
  30. 30. Kingma D., Ba J. (2015): Adam: A method for stochastic optimization. International Conference on Learning Representations, May 7-9, 2015, San Diego, 1-13.
DOI: https://doi.org/10.2478/pomr-2020-0051 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 100 - 108
Published on: Sep 29, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Pan Geng, Xiaoyan Xu, Tomasz Tarasiuk, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.