References
- 1. Bacry E, Arneodo A, Frisch U, et al. (1989): Wavelet analysis of fully developed turbulence data and measurement of scaling exponents. Proceedings of Turbulence 89: Organized Structures and Turbulence in Fluid Mechanics.
- 2. Chinchu, M, and M. H. Supriya. (2016): Real time target recognition using Labview. International Symposium on Ocean Electronics, IEEE.10.1109/SYMPOL.2015.7581167
- 3. Christopher B, Alric A, Paul D.C, Ryan K. (2016): A Brain-Computer Interface (BCI) for the Detection of Mine-like Objects in Sidescan Sonar Imagery. Journal of Oceanic Engineering, IEEE, No. 1, Vol. 41, p. 124–139.
- 4. Detection and Classification of Acoustic Scenes and Events(2016): Outcome of the DCASE 2016 Challenge.
- 5. Esfahanian M, Zhuang H, Erdol N. (2013): Using Local Binary Pattern as Features for Classification of Dolphin Calls. Journal of the Acoustical Society of America, No. 1, Vol. 134, p.105–111.10.1121/1.481116223862897
- 6. Feng Y, Tao R, Wang Y. (2012): Modeling and feature analysis of underwater acoustic signal of accelerating propeller. Science China Information Sciences, No. 2, Vol. 55, p. 270–280.10.1007/s11432-011-4285-9
- 7. Flandrin P. (1999): Time-Frequency/Time-Scale Analysis. Academic Press.
- 8. Gao Ch., Liu H. (2018): Passive localization for mixed-field moving sources. Polish Maritime Research, Special Issue 2018 S2(98), Vol. 25, 69–74.
- 9. Hong, Yang, Y. Li, and G. Li. (2016): Feature extraction and classification for underwater target signals based on Hilbert-Huang transform theory. Indian Journal of Geo-Marine Sciences, No. 10, Vol. 45, p. 1272-1278.
- 10. Huang N. E, Sheen Z. Steven R. L, et al. (1998): The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proc. R. Soc. Lond. A, Vol. 454, p. 903–995.10.1098/rspa.1998.0193
- 11. Li, Haitao, et al. (2015): A method based on wavelet packets-fractal and SVM for underwater acoustic signals recognition. International Conference on Signal Processing, IEEE, p. 2169–2173.
- 12. Li, X. K., L. Xie, and Y. Qin. (2009): Underwater target feature extraction using Hilbert-Huang transform. Journal of Harbin Engineering University, No. 5, Vol. 30, p. 542–546.
- 13. Liu, Hui, et al. (2017): Novel Research on Feature Extraction of Acoustic Targets Based on Manifold Learning. International Conference on Computer Science and Applications, IEEE, p. 227–231.
- 14. Oswald. J. N, Au W. W. L. (2011): Minke whale (Balanoptera acutorostrata) boings detected at the Station ALOHA Cabled Observatory. Journal of the Acoustical Society of America, No. 5, Vol. 129, p. 3353–3360.10.1121/1.357555521568435
- 15. Sherin, B. M. and M. H. Supriya. (2016): SOS-based selection and parameter optimization for underwater target classification. Oceans, IEEE, p. 1–4.10.1109/OCEANS.2016.7761199
- 16. Song H J, Xu F, Zheng B Y, etc. (2015): An Artificial Intelligence Recognition Algorithm for Yangtze Finless Porpoise. OCEANS’15 MTS/IEEE, Washington. 19–22 Oct.
- 17. Sun, Lu, et al. (2017):READER: Robust Semi-Supervised Multi-Label Dimension Reduction. Transactions on Information & Systems, E100.D.10, p. 2597–2604.10.1587/transinf.2017EDP7184
- 18. Wang B, He Ch. (2017): Underwater target direction of arrival estimation by small acoustic sensor array based on sparse Bayesian learning. Polish Maritime Research, Special Issue 2017 S2 (94), Vol. 24, pp. 95–102.
- 19. Wens F J, Murphy M S. (1988): A short-time Fourier transform. Signal Processing, No. 1, Vol. 14, p. 3–10.
- 20. Wang S G, Zeng X Y. (2014): Robust underwater noise target classification using auditory inspired time-frequency analysis. Applied Acoustics, No. 4, Vol. 78, p. 68–76.10.1016/j.apacoust.2013.11.003
- 21. Wang, Wenbo, et al. (2016): Feature ex5traction of underwater target in auditory sensation area based on MFCC. Ocean Acoustics, IEEE, p. 1–6.
- 22. Zhang, Lanyue, et al. (2016): Feature Extraction of Underwater Target Signal Using Mel Frequency Cepstrum Coefficients Based on Acoustic Vector Sensor. Journal of Sensors, Vol. 4, p. 1–11.10.1155/2016/7864213