Have a personal or library account? Click to login
A New Low SNR Underwater Acoustic Signal Classification Method Based on Intrinsic Modal Features Maintaining Dimensionality Reduction Cover

A New Low SNR Underwater Acoustic Signal Classification Method Based on Intrinsic Modal Features Maintaining Dimensionality Reduction

By: Yang Ju,  Zhengxian Wei,  Li Huangfu and  Feng Xiao  
Open Access
|Jul 2020

References

  1. 1. Bacry E, Arneodo A, Frisch U, et al. (1989): Wavelet analysis of fully developed turbulence data and measurement of scaling exponents. Proceedings of Turbulence 89: Organized Structures and Turbulence in Fluid Mechanics.
  2. 2. Chinchu, M, and M. H. Supriya. (2016): Real time target recognition using Labview. International Symposium on Ocean Electronics, IEEE.10.1109/SYMPOL.2015.7581167
  3. 3. Christopher B, Alric A, Paul D.C, Ryan K. (2016): A Brain-Computer Interface (BCI) for the Detection of Mine-like Objects in Sidescan Sonar Imagery. Journal of Oceanic Engineering, IEEE, No. 1, Vol. 41, p. 124–139.
  4. 4. Detection and Classification of Acoustic Scenes and Events(2016): Outcome of the DCASE 2016 Challenge.
  5. 5. Esfahanian M, Zhuang H, Erdol N. (2013): Using Local Binary Pattern as Features for Classification of Dolphin Calls. Journal of the Acoustical Society of America, No. 1, Vol. 134, p.105–111.10.1121/1.481116223862897
  6. 6. Feng Y, Tao R, Wang Y. (2012): Modeling and feature analysis of underwater acoustic signal of accelerating propeller. Science China Information Sciences, No. 2, Vol. 55, p. 270–280.10.1007/s11432-011-4285-9
  7. 7. Flandrin P. (1999): Time-Frequency/Time-Scale Analysis. Academic Press.
  8. 8. Gao Ch., Liu H. (2018): Passive localization for mixed-field moving sources. Polish Maritime Research, Special Issue 2018 S2(98), Vol. 25, 69–74.
  9. 9. Hong, Yang, Y. Li, and G. Li. (2016): Feature extraction and classification for underwater target signals based on Hilbert-Huang transform theory. Indian Journal of Geo-Marine Sciences, No. 10, Vol. 45, p. 1272-1278.
  10. 10. Huang N. E, Sheen Z. Steven R. L, et al. (1998): The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proc. R. Soc. Lond. A, Vol. 454, p. 903–995.10.1098/rspa.1998.0193
  11. 11. Li, Haitao, et al. (2015): A method based on wavelet packets-fractal and SVM for underwater acoustic signals recognition. International Conference on Signal Processing, IEEE, p. 2169–2173.
  12. 12. Li, X. K., L. Xie, and Y. Qin. (2009): Underwater target feature extraction using Hilbert-Huang transform. Journal of Harbin Engineering University, No. 5, Vol. 30, p. 542–546.
  13. 13. Liu, Hui, et al. (2017): Novel Research on Feature Extraction of Acoustic Targets Based on Manifold Learning. International Conference on Computer Science and Applications, IEEE, p. 227–231.
  14. 14. Oswald. J. N, Au W. W. L. (2011): Minke whale (Balanoptera acutorostrata) boings detected at the Station ALOHA Cabled Observatory. Journal of the Acoustical Society of America, No. 5, Vol. 129, p. 3353–3360.10.1121/1.357555521568435
  15. 15. Sherin, B. M. and M. H. Supriya. (2016): SOS-based selection and parameter optimization for underwater target classification. Oceans, IEEE, p. 1–4.10.1109/OCEANS.2016.7761199
  16. 16. Song H J, Xu F, Zheng B Y, etc. (2015): An Artificial Intelligence Recognition Algorithm for Yangtze Finless Porpoise. OCEANS’15 MTS/IEEE, Washington. 19–22 Oct.
  17. 17. Sun, Lu, et al. (2017):READER: Robust Semi-Supervised Multi-Label Dimension Reduction. Transactions on Information & Systems, E100.D.10, p. 2597–2604.10.1587/transinf.2017EDP7184
  18. 18. Wang B, He Ch. (2017): Underwater target direction of arrival estimation by small acoustic sensor array based on sparse Bayesian learning. Polish Maritime Research, Special Issue 2017 S2 (94), Vol. 24, pp. 95–102.
  19. 19. Wens F J, Murphy M S. (1988): A short-time Fourier transform. Signal Processing, No. 1, Vol. 14, p. 3–10.
  20. 20. Wang S G, Zeng X Y. (2014): Robust underwater noise target classification using auditory inspired time-frequency analysis. Applied Acoustics, No. 4, Vol. 78, p. 68–76.10.1016/j.apacoust.2013.11.003
  21. 21. Wang, Wenbo, et al. (2016): Feature ex5traction of underwater target in auditory sensation area based on MFCC. Ocean Acoustics, IEEE, p. 1–6.
  22. 22. Zhang, Lanyue, et al. (2016): Feature Extraction of Underwater Target Signal Using Mel Frequency Cepstrum Coefficients Based on Acoustic Vector Sensor. Journal of Sensors, Vol. 4, p. 1–11.10.1155/2016/7864213
DOI: https://doi.org/10.2478/pomr-2020-0040 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 187 - 198
Published on: Jul 17, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Yang Ju, Zhengxian Wei, Li Huangfu, Feng Xiao, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.