Have a personal or library account? Click to login
Detection of Floating Objects Based on Hydroacoustic and Hydrodynamic Pressure Measurements in the Coastal Zone Cover

Detection of Floating Objects Based on Hydroacoustic and Hydrodynamic Pressure Measurements in the Coastal Zone

Open Access
|Jul 2020

References

  1. 1. Kuşku H., Yiğit M., Ergün S., YiğitÜ., Taylor N. (2018): Acoustic Noise Pollution from Marine Industrial Activities: Exposure and Impacts. Aquatic Research, 1(4), 148–161, DOI: 10.3153/AR18017.10.3153/AR18017
  2. 2. Tournadre J. (2014): Anthropogenic pressure on the open ocean: The growth of vessel traffic revealed by altimeter data analysis. Geophysical Research Letters,41(22),7924–7932, DOI: https://doi.org/10.1002/2014GL061786.10.1002/2014GL061786
  3. 3. SOLAS (2000): Safety of Life at Sea, Chapter V, Regulation 19, 470–473.
  4. 4. Mazzarella F., Vespe M.,Alessandrini A., Tarchi D., Aulicino G., Vollero A.(2017): A novel anomaly detection approach to identify intentional AIS on-off switching. Expert Systems with Applications, 78, 110–123, DOI: 10.1016/j. eswa.2017.02.011.10.1016/j.eswa.2017.02.011
  5. 5. Riveiro M., Falkman G., Ziemke T.(2008): Improving maritime anomaly detection and situation awareness through interactive visualization. 11th International Conference on Information Fusion, Cologne, 1–8, IEEE Xplore.
  6. 6. Häkkien J. M., Posti A. I. (2013): Overview of Maritime Accidents Involving Chemicals Worldwide in the Baltic Sea. In: Marine Transport & Shipping – Marine Navigation and Safety of Sea Transportation, Weintrit A. & Neumann T. (Eds.),15–25, CRC Press, DOI: 10.12716/1001.08.02.16.10.12716/1001.08.02.16
  7. 7. Hassanzadeh M. A. (2013): Port Safety; Requirements & Economic Outcomes. In: Marine Transport & Shipping – Marine Navigation and Safety of Sea Transportation, Weintrit A. & Neumann T. (Eds.), 117–121, CRC Press.10.1201/b14960-20
  8. 8. Marcjan K., Gucma L. (2015): A concept of a vessel domain for the use of navigational safety assessment. Journal of KONBiN, 33(1), 19–28,DOI: https://doi.org/10.1515/jok-2015-0002.10.1515/jok-2015-0002
  9. 9. Parnell K. E., Kofoed-Hansen H. (2001): Wakes from largehigh-speed ferries in confined coastal waters: Management approaches with examples from New Zealand and Denmark. Coastal Management, 29(3), 217–237, DOI: 10.1080/08920750152102044.10.1080/08920750152102044
  10. 10. Baztan J., Chouinard O., Jorgensen B., Tett P., Vanderlinden J. P., Vasseur L. (2015): Coastal Zones, Solutions for the 21st Century. Elsevier.
  11. 11. Haelters J., Norro A., Jacques Th. (2009): Underwater noise emission during the Phase I construction of the C-Power wind farm and baseline for the Belwind wind farm. In: Offshore wind farms in the Belgian part of the North Sea: State of the art after two years of environmental monitoring, Royal Belgian Institute for Natural Sciences, Management Unit of the North Sea Mathematical Models, Degraer, S.; Brabant, R. (Eds.), pp. 17–37.
  12. 12. Kozaczka E., Grelowska G. (2018): Propagation of vessel-generated noise in a shallow sea. Polish Maritime Research, 25(2), 37–46, DOI: 10.2478/pomr-2018-0052.10.2478/pomr-2018-0052
  13. 13. Kozaczka E., Grelowska G. (2017): Theoretical model of acoustic wave propagation in shallow water. Polish Maritime Research, 24(2), 48–55, DOI: 10.1515/pomr-2017-0049.10.1515/pomr-2017-0049
  14. 14. Faltinsen O. M. (2005): Hydrodynamics of High-Speed Marine Vehicles. Cambridge University Press.10.1017/CBO9780511546068
  15. 15. Islam H., GuedesSoares C. (2018): Estimation of hydrodynamic derivatives of a container vessel using PMM simulation in OpenFOAM. Ocean Engineering,164, 414–425, DOI: https://doi.org/10.1016/j.oceaneng.2018.06.063.10.1016/j.oceaneng.2018.06.063
  16. 16. Altomare C., Crespo A. J. C., Dominguez J. M., Gómez-Gesteira M., Suzuki T.,Verwaest T.(2015): Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures. Coastal Engineering, 96, 1–12, DOI: https://doi.org/10.1016/j.coastaleng.2014.11.001.10.1016/j.coastaleng.2014.11.001
  17. 17. Higuera P., Lara J. L., Losada I. J. (2013): Simulating coastal engineering processes with OpenFOAM. Coastal Engineering, 71, 119–134, DOI: 10.1016/j.coastaleng.2012.06.002.10.1016/j.coastaleng.2012.06.002
  18. 18. Carlton J. S., Vlasić D. (2005): Ship vibration and noise: Some topical aspects. Lloyd’s Technical Papers, 1st International Ship Noise and Vibration Conference: London, June 20–21, 2005, Lloyd’s Register Technical Papers.
  19. 19. Gloza I., Malinowski S. J. (2002): Identification of the vessels underwater noise sources in the coastal region. Hydroacoustics, 5, 9–16.
  20. 20. Gloza I., Buszman K. (2014): Sound intensity distribution as an underwater acoustic investigation process. Hydroacoustics, 17, 57–62.
  21. 21. Park I. R. (2015): Numerical analysis of flow around the hull and the propeller of a vessel advancing in shallow water. Journal of Computational Fluids Engineering, 20(4), 93–101, DOI: 10.6112/kscfe.2015.20.4.093.10.6112/kscfe.2015.20.4.093
  22. 22. Koronowicz T., Krzemianowski Z. (2007): Investigations of the influence of screw propeller operation on water flow around stern part of vessel hull. Polish Maritime Research,14(1), 3–8, DOI: 10.2478/v10012-007-0001-5.10.2478/v10012-007-0001-5
  23. 23. Bertram V. (2012): Practical vessel hydrodynamics, 2nd Edition, Elsevier.
  24. 24. Gloza I., Buszman K. (2011): The multi-influence passive module for underwater environment monitoring. Hydroacoustics, 14, 47–54.
  25. 25. Buszman K. (2013): Examination of acoustic wave propagation in real conditions. Hydroacoustics, 16, 11–18.
  26. 26. Figurski M., Nykiel G. (2018): Satellite geodesy – Polish COSPAR Report 2018. Space Research in Poland Report to Committee on Space Research, 3–91.
  27. 27. Makar A. (2018): Dynamic tests of ASG-EUPOS receiver in the hydrographic application, 18th International Multidisciplinary Scientific GeoConferenceSGEM 2018, Albena, Bulgaria, 2018, DOI: 10.5593/sgem2018/2.2/S09.094.10.5593/sgem2018/2.2/S09.094
  28. 28. Vujović I., Kuzmanić I. (2018): Investigation of weather conditions’ influence to the maritime zone surveillance – Ground truth generation. 21st International Research/Expert Conference on Trends in the Development of Machinery and Associated Technology TMT,Karlovy Vary, Czech Republic, 2018.
  29. 29. Massel S. R. (1989): Hydrodynamics of Coastal Zones, 48, Elsevier, DOI: https://doi.org/10.1017/S0022112090222149.10.1017/S0022112090222149
  30. 30. Tan W.Y. (1992): Mathematical theory and numerical solution for a two-dimensional system of shallow-water equations. Shallow Water Hydrodynamics, 55, Elsevier.
  31. 31. Ferretti G., Barani S., Scafidi D., Capello M., Besio G. (2018): Near real-time monitoring of significant sea wave height through microseism recordings: An application in the Ligurian Sea (Italy). Ocean & Coastal Management, 165, 185–194,DOI: 10.1016/j.ocecoaman.2018.08.023.10.1016/j.ocecoaman.2018.08.023
DOI: https://doi.org/10.2478/pomr-2020-0038 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 168 - 175
Published on: Jul 17, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Krystian Buszman, Małgorzata Gloza, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.