Have a personal or library account? Click to login
Motion Characteristics After Ricochet: An Experimental Investigation Cover

Motion Characteristics After Ricochet: An Experimental Investigation

Open Access
|Jul 2020

References

  1. 1. Yang J., Li Y., Feng J., et al. (2017): Simulation and experimental research on trans-media vehicle water-entry motion characteristics at low speed. PLOS ONE, 12(5), e0178461-.10.1371/journal.pone.0178461544878428558012
  2. 2. Ma Z., Feng J., Yang J. (2018): Research on vertical air–water trans-media control of hybrid unmanned aerial underwater vehicles based on adaptive sliding mode dynamical surface control. International Journal of Advanced Robotic Systems, 15(2), 172988141877053-.10.1177/1729881418770531
  3. 3. Feng J., Li Y., Xu B., et al. (2016): Minimum thrust of a morphing unmanned submersible aerial vehicle in the water-to-air motion. Transactions of FAMENA, 40(4), 69-82.
  4. 4. Xu B., Li Y., Feng J., et al. (2016): Research on the water-entry attitude of a submersible aircraft. SpringerPlus, 5(1), 1933-1937.
  5. 5. Johnson W. (1998): Ricochet of non-spinning projectiles, mainly from water. Part I: Some historical contributions. International Journal of Impact Engineering, 21(1-2), 15-24.
  6. 6. Johnson W. (1998): The ricochet of spinning and non-spinning spherical projectiles, mainly from water. Part II: an outline of theory and warlike applications. International Journal of Impact Engineering, 21(1-2), 25-34.
  7. 7. Nishida M., Okumura M., Tanaka K. (2010): Effects of density ratio and diameter ratio on critical incident angles of projectiles impacting granular media. Granular Matter, 12(4), 337-344.10.1007/s10035-010-0186-7
  8. 8. Xu J., Lee C. K., Fan S. C., et al. (2014): A study on the ricochet of concrete debris on sand. International Journal of Impact Engineering, 65, 56-68.10.1016/j.ijimpeng.2013.11.003
  9. 9. Vijayalakshmi M., Naik S. D. (2015): Skipping stone to projectile ricochet. International Review on Modelling and Simulations, 8(1), 104-110.
  10. 10. Wim K., Ivo A., Erwin J. M. (2015): An empirical study on the relation between the critical angle for bullet ricochet and the properties of wood. Journal of Forensic Sciences, 60(3), 605-610.
  11. 11. Xue J., Shen P., Wang W. (2016): Research on ricochet and its regularity of projectiles obliquely penetrating into concrete target. Chinese Journal of Explosives & Propellants, 18(5), 2754-2770.10.21595/jve.2016.16784
  12. 12. Jian D., Kehui W., Gang Z., et al. (2016): Critical ricochet performance of penetrator impacting concrete targets. Explosion and Shock Waves, 36(6), 797-802.
  13. 13. Jian D., Kehui W., Gang Z., et al. (2016): Evaluation method for critical ricochet of projectile obliquely penetrating hard target. Acta Armamentarii, 37(8), 1395-1400.
  14. 14. Li Y., Feng J., Hu J., et al. (2016): Research on entry water ricochet progress of a vehicle at small angle. Acta Armamentarii, 37(10), 1860-1871.
  15. 15. Chen G. M., Feng J. F., Hu J. H., et al. (2017): The influence of initial conditions of water-entry on ricochet phenomenon. Fluid Dynamics Research, 49(4), 045505.
DOI: https://doi.org/10.2478/pomr-2020-0021 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 4 - 10
Published on: Jul 17, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Guoming Chen, Junhua Hu, An Liu, Jinfu Feng, Qingqing Hu, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.