1. Kochanska I. (2020): Assessment of Wide-Sense Stationarity of an Underwater Acoustic Channel Based on a Pseudo-Random Binary Sequence Probe Signal. Applied Sciences, 10(4), 1221; doi: <a href="https://doi.org/10.3390/app10041221.10.3390/app10041221" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/app10041221.10.3390/app10041221</a>
2. Kochanska I., Nissen I., Marszal J. (2018): A method for testing the wide-sense stationary uncorrelated scattering assumption fulfillment for an underwater acoustic channel. Journal of the Acoustical Society of America, 143, EL116; doi: <a href="https://doi.org/10.1121/1.5023834.10.1121/1.502383429495734" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1121/1.5023834.10.1121/1.502383429495734</a>
4. Marszal J., Salamon R. (2010): Multistatic Doppler Sonar for Man-Made Lakes and Water-Power Plants Antiterroristic Protection. Proc. of the 10th European Conference on Underwater Acoustics, Istanbul 2010, pp. 1333-1339.
9. Ostrowski Z. J. (2015): Doppler Multistatic System for Moving Target Detection and Tracking in Water [in Polish]. In: Progress of Acoustics, ed. K. J. Opieliński, Polish Acoustical Society, Wrocław, pp. 631-642.
10. Ostrowski Z. J., Marszal J., Salamon R. (2018): Underwater Navigation System Based on Doppler Shifts of a Continuous Wave. Proc. 2018 Joint Conference – Acoustics, Ustka 2018, IEEE Xplore Digital Library, pp. 240-245.<a href="https://doi.org/10.1109/ACOUSTICS.2018.8502410" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ACOUSTICS.2018.8502410</a>