Have a personal or library account? Click to login
Modelling and Optimisation of Vacuum Collection System for Cruise Ship Kitchen Garbage Cover

Modelling and Optimisation of Vacuum Collection System for Cruise Ship Kitchen Garbage

By:
Du Jun,  Li Ruonan,  Wu Xin and  Zhao Hang  
Open Access
|Apr 2020

References

  1. 1. Chen J., et al. (2015): Erosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD-DEM coupling method. Powder Technology, 275, 182-187.<a href="https://doi.org/10.1016/j.powtec.2014.12.057" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.powtec.2014.12.057</a>
  2. 2. Du, J.,Bansal, P.,Huang, B. (2012): Simulation model of a greenhouse with a heat-pipe heating system. Applied Energy, 93(C), 268-276.<a href="https://doi.org/10.1016/j.apenergy.2011.12.069" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.apenergy.2011.12.069</a>
  3. 3. Du J., Cai Z.,Zhang Y. (2018): Simulation and experimental study of SCR injection system. Polish Maritime Research Special Issue 2018 S2(98) 2018 Vol. 25, 49-55.
  4. 4. Du J., Li R., Wu X., Zhang Y. (2018): Study on optimization simulation of SCR denitration system for marine diesel engine. Polish Maritime Research Special Issue 2018 S3(99) 2018 Vol. 25, 13-21.
  5. 5. Du, J., Li, R., Wang, H., Wu, X. (2019): Environmental Study on Supercritical CO2 Extraction of Nanocrystalline. Ekoloji, 107(28), 3169-3175.
  6. 6. Fernández C.,Manyà F.,Mateu C., et al. (2014): Modeling energy consumption in automated vacuum waste collection systems. Environmental Modelling & Software, 56, 63-73.<a href="https://doi.org/10.1016/j.envsoft.2013.11.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.envsoft.2013.11.013</a>
  7. 7. Fernández C., Manyà F., Mateu C., Sole-Mauri F. (2015): Approximate dynamic programming for automated vacuum waste collection systems. Environmental Modelling & Software, 67, 128-137.<a href="https://doi.org/10.1016/j.envsoft.2015.01.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.envsoft.2015.01.013</a>
  8. 8. Fisher C., Meech R. (2013): Bunkers: An analysis of the technical and environmental issues. Petrospot Limited, UK.
  9. 9. Huang S., et al. (2015): Transient numerical simulation for solid-liquid flow in a centrifugal pump by DEM-CFD coupling. Engineering Applications of Computational Fluid Mechanics, 9(1), 411-418.<a href="https://doi.org/10.1080/19942060.2015.1048619" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/19942060.2015.1048619</a>
  10. 10. Hong S., Shanshan G., Xiaohui Q, (2018): Thermodynamics analysis of a stratospheric airship with hovering capability. Applied Thermal Engineering, 146, 600-657.
  11. 11. Jajcevic D., et al. (2013): Large-scale CFD–DEM simulations of fluidized granular systems. Chemical Engineering Science, 98(29), 298-310.<a href="https://doi.org/10.1016/j.ces.2013.05.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ces.2013.05.014</a>
  12. 12. Konstandopoulos A. G., Zarvalis D., Chasapidis L., et al. (2017): Investigation of SCR Catalysts for Marine Diesel Applications. SAE Int. J. Engines, 10(4) 16530-1666.<a href="https://doi.org/10.4271/2017-01-0947" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4271/2017-01-0947</a>
  13. 13. Levy A. (2010): Modeling of heat transfer in pneumatic conveyer using a combined DEM-CFD numerical code. Drying Technology, 28(2), 155-164.
  14. 14. Mohseni M., Peters B. (2016): Effects of particle size distribution on drying characteristics in a drum by XDEM: A case study. Chemical Engineering Science, 152, 689-698.<a href="https://doi.org/10.1016/j.ces.2016.07.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ces.2016.07.004</a>
  15. 15. Marigo M., Stitt E. H. (2015): Discrete Element Method (DEM) for Industrial Applications: Comments on Calibration and Validation for the Modelling of Cylindrical Pellets. Kona, 32, 236-252.<a href="https://doi.org/10.14356/kona.2015016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.14356/kona.2015016</a>
  16. 16. Patil A. V., et al. (2015): Comparison of CFD–DEM heat transfer simulations with infrared/visual measurements. Chemical Engineering Journal, 277, 388-401.<a href="https://doi.org/10.1016/j.cej.2015.04.131" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cej.2015.04.131</a>
  17. 17. Pan D., Gu C., Zhang D., et al. (2019): Investigation on the relationship between slurry droplet entrainment and fine particle emission in the limestone-gypsum WFGD system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects (5):1-14.
  18. 18. Scherer V., et al. (2016): Coupled DEM–CFD simulation of drying wood chips in a rotary drum–Baffle design and model reduction. Fuel, 184, 896-904.<a href="https://doi.org/10.1016/j.fuel.2016.05.054" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.fuel.2016.05.054</a>
  19. 19. Wang J.,Chia A., Meng H., et al. (2010): Control of Diesel Engine Urea Selective Catalytic Reduction Systems. Etd. ohiolink.edu, 2010.
  20. 20. Zhong W., et al. (2016): DEM/CFD-DEM modelling of non-spherical particulate systems: Theoretical developments and applications. Powder Technology, 302, 108-152.<a href="https://doi.org/10.1016/j.powtec.2016.07.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.powtec.2016.07.010</a>
DOI: https://doi.org/10.2478/pomr-2020-0016 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 152 - 161
Published on: Apr 30, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Du Jun, Li Ruonan, Wu Xin, Zhao Hang, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.