1. Semrau I. (1990): Wpływ budowli hydrotechnicznych na brzeg morski. Brzeg morski (1), Studia i Materiały Oceanologiczne, Nr 55, PAN Komitet Badań Morza, pp. 185-200.
2. Silvester R., Hsu J. R. C. (1997): Coastal stabilization, vol. 14, Advanced Series on Ocean Engineering, World Scientific, Singapore.<a href="https://doi.org/10.1142/3475" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1142/3475</a>
3. Martins G. M., Amaral A. F., Wallenstein F. M., Neto A. I. (2009): Influence of a breakwater on nearby rocky intertidal community structure. Marine Environmental Research, 67(4-5) 237-245.<a href="https://doi.org/10.1016/j.marenvres.2009.03.00219342091" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.marenvres.2009.03.00219342091</a>
5. Mariak A., Kurpinska M. (2018): The effect of macro polymer fibres length and content on the fibre reinforced concrete. MATEC Web of Conferences. DOI:<a href="https://doi.org/10.1051/matecconf/201821903004.10.1051/matecconf/201821903004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1051/matecconf/201821903004.10.1051/matecconf/201821903004</a>
6. Kristowski A., Grzyl B., Kurpinska M., Pszczoła M. (2018): The rigid and flexible road pavements in terms of life cycle costs. Creative Construction Conference 2018. DOI:<a href="https://doi.org/10.3311/CCC2018-030.10.3311/CCC2018-030" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3311/CCC2018-030.10.3311/CCC2018-030</a>
7. Pawelska-Mazur M., Kurpinska M. (2005): Retrofitted VI bro-pressed pavement bricks and their impregnation in modern architecture. Keep Concrete Attractive - Proceedings of the Fib Symposium 2005.
8. Li M., Li V. C. (2013): Rheology, fiber dispersion, and robust properties of engineered cementitious composites. Materials and Structures/Materiaux et Constructions, 46(3), 405–420.
9. Qiu J., Yang E. H. (2017): Micromechanics-based investigation of fatigue deterioration of engineered cementitious composite (ECC). Cement and Concrete Research, 95, 65–74.<a href="https://doi.org/10.1016/j.cemconres.2017.02.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cemconres.2017.02.029</a>
10. Luo H., Wu Y., Zhao A. (2017): Hydrothermally synthesized porous materials from municipal solid waste incineration bottom ash and their interfacial interactions with chloroaromatic compounds. Journal of Cleaner Production, 162, 411–419.<a href="https://doi.org/10.1016/j.jclepro.2017.06.082" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jclepro.2017.06.082</a>
11. Skarżyński Ł., Suchorzewski J. (2018): Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using Digital Image Correlation technique and X-ray micro computed tomography. Constr. Build. Mat. DOI: <a href="https://doi.org/10.1016/j.conbuildmat.2018.06.18210.1016/j.conbuildmat.2018.06.182" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.conbuildmat.2018.06.18210.1016/j.conbuildmat.2018.06.182</a>
13. Yoo D. Y., Banthia N., Yoon Y. S. (2016): Predicting service deflection of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP bars. Composites Part B: Engineering, 99, 381–397.<a href="https://doi.org/10.1016/j.compositesb.2016.06.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.compositesb.2016.06.013</a>
14. Yang J., Shin H., Yoo D. (2017): Benefits of using amorphous metallic fibers in concrete pavement for long-term performance. Archives of Civil and Mechanical Engineering, 17(4), 750–760.<a href="https://doi.org/10.1016/j.acme.2017.02.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.acme.2017.02.010</a>
15. Tabatabaeian M., Khaloo A., Joshaghani A., Hajibandeh E. (2017): Experimental investigation on effects of hybrid fibers on rheological, mechanical, and durability properties of high strength SCC. Construction and Building Materials, 147, 497–509.<a href="https://doi.org/10.1016/j.conbuildmat.2017.04.181" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.conbuildmat.2017.04.181</a>
16. Sideris K. K., Manita P., Chaniotakis E. (2009): Performance of thermally damaged fiber-reinforced concretes. Construction and Building Materials, 23, 1232–1239.<a href="https://doi.org/10.1016/j.conbuildmat.2008.08.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.conbuildmat.2008.08.009</a>