References
- 1. Adak M., Mandal N. R. (2010): Numerical and experimental study of mitigation of welding distortion. Applied Mathematical Modeling, 34, 134–158.10.1016/j.apm.2009.03.035
- 2. Banaszek A., Łosiewicz Z., Jurczak W. (2018): Corrosion influence on safety of hydraulic pipelines installed on decks of contemporary product and chemical tankers. Polish Maritime Research, 2(98), 25, 71–77.10.2478/pomr-2018-0056
- 3. Company Standard T081-02 (2001): Gas-shielded metal-arc welding, part II – Welding procedure specifications WPS, Szczecin Shipyard Inc. 2001.
- 4. Company Standard: T100-01 (2001): Steel ship hull. The hull structure accuracy. Szczecin Shipyard Inc., 2001.
- 5. Deng D., Zhou Y., Bi T., Liu X. (2013): Experimental and numerical investigations of welding distortion inducted by CO2 gas arc welding in thin-plate bead-on joints. Materials and Design, 52, 720–729.10.1016/j.matdes.2013.06.013
- 6. Depradeux L., Jullien J. F. (2004): Experimental and numerical simulation of thermomechanical phenomena during a TIG welding process. Journal for Physics. IV France, 120, 697–704.10.1051/jp4:2004120080
- 7. Draper N. R., Smith H. (1998): Applied regression analysis, John Wiley, New York.10.1002/9781118625590
- 8. Goldak J. (1984): A new finite element model for weld mechanics. Metallurgical Transactions B, 15, 299–305.10.1007/BF02667333
- 9. Goldak J., Oddy A., Gu M., Ma W., Mashaie A., Hughes E. (1992): Coupling heat transfer, microstructure evolution and thermal stress analysis in weld mechanics, Proc. of IUTAM Symp. on Mechanical Effects of Welding, Springer-Verlag, Berlin.10.1007/978-3-642-84731-8_1
- 10. Liang W., Deng D. (2018): Influences of heat input, welding sequence and external restraint on twisting distortion in an asymmetrical curved stiffened panel. Advances in Engineering Software, 115, 439–451.10.1016/j.advengsoft.2017.11.002
- 11. McPherson N. A., Galloway A. M., McGhie W. (2013): Thin plate buckling mitigation and reduction challenges for naval ships. Journal of Marine Engineering & Technology, 12(2), 3–10.
- 12. Metschkow B., Graczyk T. (1997): Laser welded joints in shipbuilding. In: Graczyk T., Jastrzębski T., Brebbia C. A. (Eds.), 2nd Edition, Computational Mechanics Publications, Southampton & Boston, pp. 171–181.
- 13. Michaleris P., Debiccari A. (1997): Prediction of welding distortion. Welding Journal, 76, 172–181.
- 14. Montgomery D. C. (2001): Design and analysis of experiments, 5th Edition, John Wiley, New York.
- 15. Myers R. H., Montgomery D. C., Anderson-Cook C. M. (2009): Response Surface Methodology: process and product optimization using designed experiments, John Wiley, New York.
- 16. Okerblom N. O. (1958): The Calculations of Deformations of Welded Metal Structures, Her Majesty’s Stationery Office, London.
- 17. Okerblom N. O. (1964): Technological and structural design of welded structures, Machinostroenie, Moscow 1964.
- 18. Production Standard of the German Shipbuilding Industry (revised edition with the first edition – November 1974 and second edition – August 1977).
- 19. Radaj D. (1992): Heat effects of welding, Springer-Verlag, Berlin.10.1007/978-3-642-48640-1
- 20. Remes H., Varsta P. (2010): Statistics of weld geometry for laser-hybrid welded joints and its application within notch stress approach. Welding in the World, 54(7), 189–207.10.1007/BF03263505
- 21. Rosenthal D. (1941): Mathematical Theory of Heat Distribution during Welding and Cutting. Welding Journal, 20(5), 220–234.
- 22. Rosenthal D. (1946): The Theory of Moving Sources of Heat and Its Application to Metal Treatments. Transactions of ASME, 43, 849–866.10.1115/1.4018624
- 23. Rules for the classification and construction of sea-going ships, Part II Hull, Polish Register of Shipping, Gdańsk, January 2019.
- 24. Rykalin N. N. (1951): Calculation of Thermal Processes during Welding, The Governmental Technical Science Publishing Firm for Machine Literature, Moscow.
- 25. Shipbuilding and Repair Quality Standard IACS (1996): Part A. Shipbuilding and Repair Quality Standard for New Construction, Part B. Repair Quality Standard for Existing Ships, London.
- 26. Ueda Y., Yamakawa T. (1971): Analysis of thermal elastic-plastic stress and strain during welding. Trans. Japan Welding Soc., 2(2), 90–100.
- 27. Urbański T. (2009): Method for prediction of welding deformations of hybrid node using experimental approach (in Polish). PhD dissertation, West Pomeranian University of Technology in Szczecin.
- 28. Urbański T. (2015): Analysis of assembly suitability of the hybrid node based on weld distortion prediction models. Advances in Science and Technology Research Journal, 9(27), 28–34.10.12913/22998624/59081
- 29. Wang J., Yuan H., Ma N., Murakawa H. (2016): Recent research on welding distortion prediction in thin plate fabrication by means of elastic FE computation. Marine Structures, 47, 42–59.10.1016/j.marstruc.2016.02.004
- 30. Wang J., Zhao Y., Zou J., Zhou H., Wu Z., Du S. (2017): Welding distortion prediction with elastic FE analysis and mitigation practice in fabrication of cantilever beam component of jack-up drilling rig. Ocean Engineering, 130, 25–39.10.1016/j.oceaneng.2016.11.059
- 31. Watanabe M., Satoh K. (1961): Effect of welding conditions on the shrinkage distortion in welded structures. Welding Journal, 40, 377–384.
- 32. Westby O. (1968): Temperature distribution in the work-piece by welding. Doctoral Thesis, Technical University of Norway, Trondheim.
- 33. Yang Y. P., Castner H., Dull R., Dydo J., Fanguy D. (2013): Uniform-panel weld shrinkage data model for neat construction ship design engineering. Journal of Ship Production and Design, 29(1), 1–16.
- 34. Yang Y. P., Castner H., Dull R., Dydo J., Huang T. D., Fanguy D., Dlugokecki V., Hepinstall L. (2014): Complex-panel weld shrinkage data model for neat construction ship design engineering. Journal of Ship Production and Design, 30(1), 15–38.10.5957/JSPD.30.1.130027