1. Adak M., Mandal N. R. (2010): Numerical and experimental study of mitigation of welding distortion. Applied Mathematical Modeling, 34, 134–158.<a href="https://doi.org/10.1016/j.apm.2009.03.035" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.apm.2009.03.035</a>
2. Banaszek A., Łosiewicz Z., Jurczak W. (2018): Corrosion influence on safety of hydraulic pipelines installed on decks of contemporary product and chemical tankers. Polish Maritime Research, 2(98), 25, 71–77.<a href="https://doi.org/10.2478/pomr-2018-0056" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2018-0056</a>
5. Deng D., Zhou Y., Bi T., Liu X. (2013): Experimental and numerical investigations of welding distortion inducted by CO2 gas arc welding in thin-plate bead-on joints. Materials and Design, 52, 720–729.<a href="https://doi.org/10.1016/j.matdes.2013.06.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.matdes.2013.06.013</a>
6. Depradeux L., Jullien J. F. (2004): Experimental and numerical simulation of thermomechanical phenomena during a TIG welding process. Journal for Physics. IV France, 120, 697–704.<a href="https://doi.org/10.1051/jp4:2004120080" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1051/jp4:2004120080</a>
7. Draper N. R., Smith H. (1998): Applied regression analysis, John Wiley, New York.<a href="https://doi.org/10.1002/9781118625590" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/9781118625590</a>
8. Goldak J. (1984): A new finite element model for weld mechanics. Metallurgical Transactions B, 15, 299–305.<a href="https://doi.org/10.1007/BF02667333" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF02667333</a>
9. Goldak J., Oddy A., Gu M., Ma W., Mashaie A., Hughes E. (1992): Coupling heat transfer, microstructure evolution and thermal stress analysis in weld mechanics, Proc. of IUTAM Symp. on Mechanical Effects of Welding, Springer-Verlag, Berlin.<a href="https://doi.org/10.1007/978-3-642-84731-8_1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-84731-8_1</a>
10. Liang W., Deng D. (2018): Influences of heat input, welding sequence and external restraint on twisting distortion in an asymmetrical curved stiffened panel. Advances in Engineering Software, 115, 439–451.<a href="https://doi.org/10.1016/j.advengsoft.2017.11.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.advengsoft.2017.11.002</a>
11. McPherson N. A., Galloway A. M., McGhie W. (2013): Thin plate buckling mitigation and reduction challenges for naval ships. Journal of Marine Engineering & Technology, 12(2), 3–10.
15. Myers R. H., Montgomery D. C., Anderson-Cook C. M. (2009): Response Surface Methodology: process and product optimization using designed experiments, John Wiley, New York.
20. Remes H., Varsta P. (2010): Statistics of weld geometry for laser-hybrid welded joints and its application within notch stress approach. Welding in the World, 54(7), 189–207.<a href="https://doi.org/10.1007/BF03263505" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF03263505</a>
22. Rosenthal D. (1946): The Theory of Moving Sources of Heat and Its Application to Metal Treatments. Transactions of ASME, 43, 849–866.<a href="https://doi.org/10.1115/1.4018624" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1115/1.4018624</a>
24. Rykalin N. N. (1951): Calculation of Thermal Processes during Welding, The Governmental Technical Science Publishing Firm for Machine Literature, Moscow.
25. Shipbuilding and Repair Quality Standard IACS (1996): Part A. Shipbuilding and Repair Quality Standard for New Construction, Part B. Repair Quality Standard for Existing Ships, London.
27. Urbański T. (2009): Method for prediction of welding deformations of hybrid node using experimental approach (in Polish). PhD dissertation, West Pomeranian University of Technology in Szczecin.
28. Urbański T. (2015): Analysis of assembly suitability of the hybrid node based on weld distortion prediction models. Advances in Science and Technology Research Journal, 9(27), 28–34.<a href="https://doi.org/10.12913/22998624/59081" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.12913/22998624/59081</a>
29. Wang J., Yuan H., Ma N., Murakawa H. (2016): Recent research on welding distortion prediction in thin plate fabrication by means of elastic FE computation. Marine Structures, 47, 42–59.<a href="https://doi.org/10.1016/j.marstruc.2016.02.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.marstruc.2016.02.004</a>
30. Wang J., Zhao Y., Zou J., Zhou H., Wu Z., Du S. (2017): Welding distortion prediction with elastic FE analysis and mitigation practice in fabrication of cantilever beam component of jack-up drilling rig. Ocean Engineering, 130, 25–39.<a href="https://doi.org/10.1016/j.oceaneng.2016.11.059" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2016.11.059</a>
33. Yang Y. P., Castner H., Dull R., Dydo J., Fanguy D. (2013): Uniform-panel weld shrinkage data model for neat construction ship design engineering. Journal of Ship Production and Design, 29(1), 1–16.
34. Yang Y. P., Castner H., Dull R., Dydo J., Huang T. D., Fanguy D., Dlugokecki V., Hepinstall L. (2014): Complex-panel weld shrinkage data model for neat construction ship design engineering. Journal of Ship Production and Design, 30(1), 15–38.<a href="https://doi.org/10.5957/JSPD.30.1.130027" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5957/JSPD.30.1.130027</a>