Have a personal or library account? Click to login
Prediction of Welding-Induced Distortion of Fixed Plate Edge Using Design of Experiment Approach Cover

Prediction of Welding-Induced Distortion of Fixed Plate Edge Using Design of Experiment Approach

Open Access
|Apr 2020

References

  1. 1. Adak M., Mandal N. R. (2010): Numerical and experimental study of mitigation of welding distortion. Applied Mathematical Modeling, 34, 134–158.10.1016/j.apm.2009.03.035
  2. 2. Banaszek A., Łosiewicz Z., Jurczak W. (2018): Corrosion influence on safety of hydraulic pipelines installed on decks of contemporary product and chemical tankers. Polish Maritime Research, 2(98), 25, 71–77.10.2478/pomr-2018-0056
  3. 3. Company Standard T081-02 (2001): Gas-shielded metal-arc welding, part II – Welding procedure specifications WPS, Szczecin Shipyard Inc. 2001.
  4. 4. Company Standard: T100-01 (2001): Steel ship hull. The hull structure accuracy. Szczecin Shipyard Inc., 2001.
  5. 5. Deng D., Zhou Y., Bi T., Liu X. (2013): Experimental and numerical investigations of welding distortion inducted by CO2 gas arc welding in thin-plate bead-on joints. Materials and Design, 52, 720–729.10.1016/j.matdes.2013.06.013
  6. 6. Depradeux L., Jullien J. F. (2004): Experimental and numerical simulation of thermomechanical phenomena during a TIG welding process. Journal for Physics. IV France, 120, 697–704.10.1051/jp4:2004120080
  7. 7. Draper N. R., Smith H. (1998): Applied regression analysis, John Wiley, New York.10.1002/9781118625590
  8. 8. Goldak J. (1984): A new finite element model for weld mechanics. Metallurgical Transactions B, 15, 299–305.10.1007/BF02667333
  9. 9. Goldak J., Oddy A., Gu M., Ma W., Mashaie A., Hughes E. (1992): Coupling heat transfer, microstructure evolution and thermal stress analysis in weld mechanics, Proc. of IUTAM Symp. on Mechanical Effects of Welding, Springer-Verlag, Berlin.10.1007/978-3-642-84731-8_1
  10. 10. Liang W., Deng D. (2018): Influences of heat input, welding sequence and external restraint on twisting distortion in an asymmetrical curved stiffened panel. Advances in Engineering Software, 115, 439–451.10.1016/j.advengsoft.2017.11.002
  11. 11. McPherson N. A., Galloway A. M., McGhie W. (2013): Thin plate buckling mitigation and reduction challenges for naval ships. Journal of Marine Engineering & Technology, 12(2), 3–10.
  12. 12. Metschkow B., Graczyk T. (1997): Laser welded joints in shipbuilding. In: Graczyk T., Jastrzębski T., Brebbia C. A. (Eds.), 2nd Edition, Computational Mechanics Publications, Southampton & Boston, pp. 171–181.
  13. 13. Michaleris P., Debiccari A. (1997): Prediction of welding distortion. Welding Journal, 76, 172–181.
  14. 14. Montgomery D. C. (2001): Design and analysis of experiments, 5th Edition, John Wiley, New York.
  15. 15. Myers R. H., Montgomery D. C., Anderson-Cook C. M. (2009): Response Surface Methodology: process and product optimization using designed experiments, John Wiley, New York.
  16. 16. Okerblom N. O. (1958): The Calculations of Deformations of Welded Metal Structures, Her Majesty’s Stationery Office, London.
  17. 17. Okerblom N. O. (1964): Technological and structural design of welded structures, Machinostroenie, Moscow 1964.
  18. 18. Production Standard of the German Shipbuilding Industry (revised edition with the first edition – November 1974 and second edition – August 1977).
  19. 19. Radaj D. (1992): Heat effects of welding, Springer-Verlag, Berlin.10.1007/978-3-642-48640-1
  20. 20. Remes H., Varsta P. (2010): Statistics of weld geometry for laser-hybrid welded joints and its application within notch stress approach. Welding in the World, 54(7), 189–207.10.1007/BF03263505
  21. 21. Rosenthal D. (1941): Mathematical Theory of Heat Distribution during Welding and Cutting. Welding Journal, 20(5), 220–234.
  22. 22. Rosenthal D. (1946): The Theory of Moving Sources of Heat and Its Application to Metal Treatments. Transactions of ASME, 43, 849–866.10.1115/1.4018624
  23. 23. Rules for the classification and construction of sea-going ships, Part II Hull, Polish Register of Shipping, Gdańsk, January 2019.
  24. 24. Rykalin N. N. (1951): Calculation of Thermal Processes during Welding, The Governmental Technical Science Publishing Firm for Machine Literature, Moscow.
  25. 25. Shipbuilding and Repair Quality Standard IACS (1996): Part A. Shipbuilding and Repair Quality Standard for New Construction, Part B. Repair Quality Standard for Existing Ships, London.
  26. 26. Ueda Y., Yamakawa T. (1971): Analysis of thermal elastic-plastic stress and strain during welding. Trans. Japan Welding Soc., 2(2), 90–100.
  27. 27. Urbański T. (2009): Method for prediction of welding deformations of hybrid node using experimental approach (in Polish). PhD dissertation, West Pomeranian University of Technology in Szczecin.
  28. 28. Urbański T. (2015): Analysis of assembly suitability of the hybrid node based on weld distortion prediction models. Advances in Science and Technology Research Journal, 9(27), 28–34.10.12913/22998624/59081
  29. 29. Wang J., Yuan H., Ma N., Murakawa H. (2016): Recent research on welding distortion prediction in thin plate fabrication by means of elastic FE computation. Marine Structures, 47, 42–59.10.1016/j.marstruc.2016.02.004
  30. 30. Wang J., Zhao Y., Zou J., Zhou H., Wu Z., Du S. (2017): Welding distortion prediction with elastic FE analysis and mitigation practice in fabrication of cantilever beam component of jack-up drilling rig. Ocean Engineering, 130, 25–39.10.1016/j.oceaneng.2016.11.059
  31. 31. Watanabe M., Satoh K. (1961): Effect of welding conditions on the shrinkage distortion in welded structures. Welding Journal, 40, 377–384.
  32. 32. Westby O. (1968): Temperature distribution in the work-piece by welding. Doctoral Thesis, Technical University of Norway, Trondheim.
  33. 33. Yang Y. P., Castner H., Dull R., Dydo J., Fanguy D. (2013): Uniform-panel weld shrinkage data model for neat construction ship design engineering. Journal of Ship Production and Design, 29(1), 1–16.
  34. 34. Yang Y. P., Castner H., Dull R., Dydo J., Huang T. D., Fanguy D., Dlugokecki V., Hepinstall L. (2014): Complex-panel weld shrinkage data model for neat construction ship design engineering. Journal of Ship Production and Design, 30(1), 15–38.10.5957/JSPD.30.1.130027
DOI: https://doi.org/10.2478/pomr-2020-0014 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 134 - 142
Published on: Apr 30, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Tomasz Urbański, Andrzej Banaszek, Wojciech Jurczak, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.