Have a personal or library account? Click to login
Application of Stirling Engine Type Alpha Powered by the Recovery Energy on Vessels Cover

Application of Stirling Engine Type Alpha Powered by the Recovery Energy on Vessels

Open Access
|Apr 2020

References

  1. 1. Bataineh K. M. (2018): <em>Numerical thermodynamic model of alpha-type Stirling engine</em>. Case Studies in Thermal Engineering, 12, 104-116.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.csite.2018.03.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.csite.2018.03.010</a></dgdoi:pub-id>
  2. 2. Bocheński D. (2018): <em>Selection of main engines for hopper suction dredgers with the use of probability models</em>. Polish Maritime Research, 1(97), Vol. 25, 70-76.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/pomr-2018-0008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2018-0008</a></dgdoi:pub-id>
  3. 3. Cheng C. H., et al. (2013): <em>Theoretical and experimental study of a 300-W beta-type Stirling engine</em>. Energy, 59, 590-599.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.energy.2013.06.060" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2013.06.060</a></dgdoi:pub-id>
  4. 4. Chmielewski A., Gumiński R., Mączak J. (2016): <em>Adiabatic analysis of thermodynamic processes in the Stirling engine</em>. Proceedings of the Institute of Vehicles, 2(106), 13-20.
  5. 5. Cichy M., Kneba Z., Kropiwnicki J. (2017): <em>Causality in models of thermal processes in ship engine rooms with the use of Bond Graph (BG) method</em>. Polish Maritime Research, S1(93), Vol. 24, 32-37.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1515/pomr-2017-0018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/pomr-2017-0018</a></dgdoi:pub-id>
  6. 6. Cichy M., Kropiwnicki J., Kneba Z. (2015): <em>A model of thermal energy storage according to the convention of Bond Graphs (BG) and State Equations (SE)</em>. Polish Maritime Research, 4 (88), Vol. 22, 41-47.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1515/pomr-2015-0069" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/pomr-2015-0069</a></dgdoi:pub-id>
  7. 7. Cieśliński J. T., et al. (2012): <em>Investigation of a Stirling engine as a micro-CHP system</em>. 3rd International Conference, Low Temperature and Waste Heat Use in Energy Supply Systems, Theory and Practice, Bremen, 33-38.
  8. 8. Gheith R., Aloui F., Ben Nasrallah S. (2013): <em>Experimental investigation of a Gamma Stirling engine</em>. Int. J. Energy Res., 37, 1519-1528.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/er.2964" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/er.2964</a></dgdoi:pub-id>
  9. 9. Hirata K., Kawada M. (2005): <em>Discussion of Marine Stirling Engine Systems</em>. Proceedings of the 7th International Symposium on Marine Engineering. Tokyo, 1-5.
  10. 10. Karabulut H., et al. (2009): <em>An experimental study on the development of a b-type Stirling engine for low and moderate temperature heat sources</em>. Applied Energy, 86, 68-73.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.apenergy.2008.04.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.apenergy.2008.04.003</a></dgdoi:pub-id>
  11. 11. Korczewski Z. (2015): <em>Exhaust gas temperature measurements in diagnostics of turbocharged marine internal combustion engines. Part I. Standard measurements</em>. Polish Maritime Research, 1(85) Vol. 22, 47-54.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1515/pomr-2015-0007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/pomr-2015-0007</a></dgdoi:pub-id>
  12. 12. Kropiwnicki J. (2013): <em>Design and applications of modern Stirling engines</em>. Combustion Engines, 3, 243-249.
  13. 13. Kropiwnicki J., et al. (2017): <em>Analysis of the possibilities of using of DME fuel in motor boat drive systems</em>. Combustion Engines, 4, 74-80.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.19206/CE-2017-413" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.19206/CE-2017-413</a></dgdoi:pub-id>
  14. 14. Labeckas G., et al. (2018): <em>The effect of oxygenated diesel-n-butanol fuel blends on combustion, performance, and exhaust emissions of a turbocharged CRDI diesel engine</em>. Polish Maritime Research, 1(97), Vol. 25, 108-120.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/pomr-2018-0013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2018-0013</a></dgdoi:pub-id>
  15. 15. Lane N. W., Beale W. T. (1999): <em>A biomass-fired 1 kWe Stirling engine generator and its applications in South Africa</em>. 9th International Stirling Engine Conference, South Africa, June 2-4.
  16. 16. Litwin W., Leśniewski W., Kowalski J. (2017): <em>Energy efficient and environmentally friendly hybrid conversion of inland passenger vessel</em>. Polish Maritime Research, 4(96), Vol. 24, 77-84.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1515/pomr-2017-0138" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/pomr-2017-0138</a></dgdoi:pub-id>
  17. 17. MAN Energy Solutions (visited: 30.09.2019): <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://turbocharger.man-es.com">https://turbocharger.man-es.com</ext-link>
  18. 18. Olszewski W., Dzida M. (2018): <em>Selected combined power systems consisted of self-ignition engine and steam turbine</em>. Polish Maritime Research Special Issue, S1(97), Vol. 25, 198-203.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/pomr-2018-0042" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/pomr-2018-0042</a></dgdoi:pub-id>
  19. 19. Paul C. J., Engeda A. (2015): <em>Modeling a complete Stirling engine</em>. Energy, 80, 85-97.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.energy.2014.11.045" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.energy.2014.11.045</a></dgdoi:pub-id>
  20. 20. Ramesh U. S., Kalyani T. (2012): <em>Improving the Efficiency of Marine Power Plant Using Stirling Engine in Waste Heat Recovery Systems</em>. International Journal of Innovative Research &amp; Development, 1(10), 449-466.
  21. 21. Saab (visited: 30.09.2019): <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://saab.com/naval/submarines-and-surface-ships/submarines/submarines/">https://saab.com/naval/submarines-and-surface-ships/submarines/submarines/</ext-link>
  22. 22. Thombare D. G., Verma S. K. (2008): <em>Technological development in the Stirling cycle engines</em>. Renewable and Sustainable Energy Reviews, 12, 1-38.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.rser.2006.07.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.rser.2006.07.001</a></dgdoi:pub-id>
  23. 23. Urieli I. (visited: 12.05.2019): <em>Stirling Cycle Machine Analysis</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ohio.edu/mechanical/stirling/">https://www.ohio.edu/mechanical/stirling/</ext-link>
  24. 24. Wärtsilä (visited: 30.09.2019): <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.wartsila.com/encyclopedia/term/waste-heat-recovery-(whr)">https://www.wartsila.com/encyclopedia/term/waste-heat-recovery-(whr)</ext-link>
  25. 25. Wrona J., Prymon M. (2016): <em>Mathematical modeling of the Stirling engine</em>. Procedia Engineering, 157, 349-356.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.proeng.2016.08.376" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.proeng.2016.08.376</a></dgdoi:pub-id>
  26. 26. Yutuc W. E. (2016): <em>A Study on the Use of Stirling Engine Generator to Reduce Fuel Oil Consumption Onboard a Tanker Ship</em>. Journal of Engineering and Applied Sciences, 11(9), 2044-2049.
  27. 27. Zmuda A. (2010): <em>Estimation of the possibility of Stirling engine applications in LNG carrier power systems</em>. Scientific Journals of Maritime University of Szczecin, 21(93), 98-104.
DOI: https://doi.org/10.2478/pomr-2020-0010 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 96 - 106
Published on: Apr 30, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Jacek Kropiwnicki, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.