Have a personal or library account? Click to login
Application of Stirling Engine Type Alpha Powered by the Recovery Energy on Vessels Cover

Application of Stirling Engine Type Alpha Powered by the Recovery Energy on Vessels

Open Access
|Apr 2020

References

  1. 1. Bataineh K. M. (2018): Numerical thermodynamic model of alpha-type Stirling engine. Case Studies in Thermal Engineering, 12, 104-116.10.1016/j.csite.2018.03.010
  2. 2. Bocheński D. (2018): Selection of main engines for hopper suction dredgers with the use of probability models. Polish Maritime Research, 1(97), Vol. 25, 70-76.10.2478/pomr-2018-0008
  3. 3. Cheng C. H., et al. (2013): Theoretical and experimental study of a 300-W beta-type Stirling engine. Energy, 59, 590-599.10.1016/j.energy.2013.06.060
  4. 4. Chmielewski A., Gumiński R., Mączak J. (2016): Adiabatic analysis of thermodynamic processes in the Stirling engine. Proceedings of the Institute of Vehicles, 2(106), 13-20.
  5. 5. Cichy M., Kneba Z., Kropiwnicki J. (2017): Causality in models of thermal processes in ship engine rooms with the use of Bond Graph (BG) method. Polish Maritime Research, S1(93), Vol. 24, 32-37.10.1515/pomr-2017-0018
  6. 6. Cichy M., Kropiwnicki J., Kneba Z. (2015): A model of thermal energy storage according to the convention of Bond Graphs (BG) and State Equations (SE). Polish Maritime Research, 4 (88), Vol. 22, 41-47.10.1515/pomr-2015-0069
  7. 7. Cieśliński J. T., et al. (2012): Investigation of a Stirling engine as a micro-CHP system. 3rd International Conference, Low Temperature and Waste Heat Use in Energy Supply Systems, Theory and Practice, Bremen, 33-38.
  8. 8. Gheith R., Aloui F., Ben Nasrallah S. (2013): Experimental investigation of a Gamma Stirling engine. Int. J. Energy Res., 37, 1519-1528.10.1002/er.2964
  9. 9. Hirata K., Kawada M. (2005): Discussion of Marine Stirling Engine Systems. Proceedings of the 7th International Symposium on Marine Engineering. Tokyo, 1-5.
  10. 10. Karabulut H., et al. (2009): An experimental study on the development of a b-type Stirling engine for low and moderate temperature heat sources. Applied Energy, 86, 68-73.10.1016/j.apenergy.2008.04.003
  11. 11. Korczewski Z. (2015): Exhaust gas temperature measurements in diagnostics of turbocharged marine internal combustion engines. Part I. Standard measurements. Polish Maritime Research, 1(85) Vol. 22, 47-54.10.1515/pomr-2015-0007
  12. 12. Kropiwnicki J. (2013): Design and applications of modern Stirling engines. Combustion Engines, 3, 243-249.
  13. 13. Kropiwnicki J., et al. (2017): Analysis of the possibilities of using of DME fuel in motor boat drive systems. Combustion Engines, 4, 74-80.10.19206/CE-2017-413
  14. 14. Labeckas G., et al. (2018): The effect of oxygenated diesel-n-butanol fuel blends on combustion, performance, and exhaust emissions of a turbocharged CRDI diesel engine. Polish Maritime Research, 1(97), Vol. 25, 108-120.10.2478/pomr-2018-0013
  15. 15. Lane N. W., Beale W. T. (1999): A biomass-fired 1 kWe Stirling engine generator and its applications in South Africa. 9th International Stirling Engine Conference, South Africa, June 2-4.
  16. 16. Litwin W., Leśniewski W., Kowalski J. (2017): Energy efficient and environmentally friendly hybrid conversion of inland passenger vessel. Polish Maritime Research, 4(96), Vol. 24, 77-84.10.1515/pomr-2017-0138
  17. 17. MAN Energy Solutions (visited: 30.09.2019): https://turbocharger.man-es.com
  18. 18. Olszewski W., Dzida M. (2018): Selected combined power systems consisted of self-ignition engine and steam turbine. Polish Maritime Research Special Issue, S1(97), Vol. 25, 198-203.10.2478/pomr-2018-0042
  19. 19. Paul C. J., Engeda A. (2015): Modeling a complete Stirling engine. Energy, 80, 85-97.10.1016/j.energy.2014.11.045
  20. 20. Ramesh U. S., Kalyani T. (2012): Improving the Efficiency of Marine Power Plant Using Stirling Engine in Waste Heat Recovery Systems. International Journal of Innovative Research & Development, 1(10), 449-466.
  21. 21. Saab (visited: 30.09.2019): https://saab.com/naval/submarines-and-surface-ships/submarines/submarines/
  22. 22. Thombare D. G., Verma S. K. (2008): Technological development in the Stirling cycle engines. Renewable and Sustainable Energy Reviews, 12, 1-38.10.1016/j.rser.2006.07.001
  23. 23. Urieli I. (visited: 12.05.2019): Stirling Cycle Machine Analysis. https://www.ohio.edu/mechanical/stirling/
  24. 24. Wärtsilä (visited: 30.09.2019): https://www.wartsila.com/encyclopedia/term/waste-heat-recovery-(whr)
  25. 25. Wrona J., Prymon M. (2016): Mathematical modeling of the Stirling engine. Procedia Engineering, 157, 349-356.10.1016/j.proeng.2016.08.376
  26. 26. Yutuc W. E. (2016): A Study on the Use of Stirling Engine Generator to Reduce Fuel Oil Consumption Onboard a Tanker Ship. Journal of Engineering and Applied Sciences, 11(9), 2044-2049.
  27. 27. Zmuda A. (2010): Estimation of the possibility of Stirling engine applications in LNG carrier power systems. Scientific Journals of Maritime University of Szczecin, 21(93), 98-104.
DOI: https://doi.org/10.2478/pomr-2020-0010 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 96 - 106
Published on: Apr 30, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Jacek Kropiwnicki, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.